Open Access iconOpen Access

ARTICLE

crossmark

Gastric Tract Disease Recognition Using Optimized Deep Learning Features

Zainab Nayyar1, Muhammad Attique Khan1, Musaed Alhussein2, Muhammad Nazir1, Khursheed Aurangzeb2, Yunyoung Nam3,*, Seifedine Kadry4, Syed Irtaza Haider2

1 Department of Computer Science, HITEC University, Taxila, 47040, Pakistan
2 Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia
3 Department of Computer Science and Engineering, Soonchunhyang University, Asan, Korea
4 Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Beirut, Lebanon

* Corresponding Author: Yunyoung Nam. Email: email

(This article belongs to the Special Issue: Artificial Intelligence and IoT based intelligent systems using high performance computing for Medical applications.)

Computers, Materials & Continua 2021, 68(2), 2041-2056. https://doi.org/10.32604/cmc.2021.015916

Abstract

Artificial intelligence aids for healthcare have received a great deal of attention. Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy (WCE). Early diagnosis facilitates appropriate treatment and saves lives. Deep learning-based techniques have been used to identify gastrointestinal ulcers, bleeding sites, and polyps. However, small lesions may be misclassified. We developed a deep learning-based best-feature method to classify various stomach diseases evident in WCE images. Initially, we use hybrid contrast enhancement to distinguish diseased from normal regions. Then, a pretrained model is fine-tuned, and further training is done via transfer learning. Deep features are extracted from the last two layers and fused using a vector length-based approach. We improve the genetic algorithm using a fitness function and kurtosis to select optimal features that are graded by a classifier. We evaluate a database containing 24,000 WCE images of ulcers, bleeding sites, polyps, and healthy tissue. The cubic support vector machine classifier was optimal; the average accuracy was 99%.

Keywords


Cite This Article

APA Style
Nayyar, Z., Khan, M.A., Alhussein, M., Nazir, M., Aurangzeb, K. et al. (2021). Gastric tract disease recognition using optimized deep learning features. Computers, Materials & Continua, 68(2), 2041-2056. https://doi.org/10.32604/cmc.2021.015916
Vancouver Style
Nayyar Z, Khan MA, Alhussein M, Nazir M, Aurangzeb K, Nam Y, et al. Gastric tract disease recognition using optimized deep learning features. Comput Mater Contin. 2021;68(2):2041-2056 https://doi.org/10.32604/cmc.2021.015916
IEEE Style
Z. Nayyar et al., “Gastric Tract Disease Recognition Using Optimized Deep Learning Features,” Comput. Mater. Contin., vol. 68, no. 2, pp. 2041-2056, 2021. https://doi.org/10.32604/cmc.2021.015916

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3035

    View

  • 1686

    Download

  • 0

    Like

Share Link