Open Access iconOpen Access

ARTICLE

crossmark

Uncertainty Analysis on Electric Power Consumption

by Oakyoung Han1, Jaehyoun Kim2,*

1 University College, Sungkyunkwan University, Seoul, 03063, Korea
2 Department of Computer Education, Sungkyunkwan University, Seoul, 03063, Korea

* Corresponding Author: Jaehyoun Kim. Email: email

Computers, Materials & Continua 2021, 68(2), 2621-2632. https://doi.org/10.32604/cmc.2021.014665

Abstract

The analysis of large time-series datasets has profoundly enhanced our ability to make accurate predictions in many fields. However, unpredictable phenomena, such as extreme weather events or the novel coronavirus 2019 (COVID-19) outbreak, can greatly limit the ability of time-series analyses to establish reliable patterns. The present work addresses this issue by applying uncertainty analysis using a probability distribution function, and applies the proposed scheme within a preliminary study involving the prediction of power consumption for a single hotel in Seoul, South Korea based on an analysis of 53,567 data items collected by the Korea Electric Power Corporation using robotic process automation. We first apply Facebook Prophet for conducting time-series analysis. The results demonstrate that the COVID-19 outbreak seriously compromised the reliability of the time-series analysis. Then, machine learning models are developed in the TensorFlow framework for conducting uncertainty analysis based on modeled relationships between electric power consumption and outdoor temperature. The benefits of the proposed uncertainty analysis for predicting the electricity consumption of the hotel building are demonstrated by comparing the results obtained when considering no uncertainty, aleatory uncertainty, epistemic uncertainty, and mixed aleatory and epistemic uncertainty. The minimum and maximum ranges of predicted electricity consumption are obtained when using mixed uncertainty. Accordingly, the application of uncertainty analysis using a probability distribution function greatly improved the predictive power of the analysis compared to time-series analysis.

Keywords


Cite This Article

APA Style
Han, O., Kim, J. (2021). Uncertainty analysis on electric power consumption. Computers, Materials & Continua, 68(2), 2621-2632. https://doi.org/10.32604/cmc.2021.014665
Vancouver Style
Han O, Kim J. Uncertainty analysis on electric power consumption. Comput Mater Contin. 2021;68(2):2621-2632 https://doi.org/10.32604/cmc.2021.014665
IEEE Style
O. Han and J. Kim, “Uncertainty Analysis on Electric Power Consumption,” Comput. Mater. Contin., vol. 68, no. 2, pp. 2621-2632, 2021. https://doi.org/10.32604/cmc.2021.014665

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1755

    View

  • 1244

    Download

  • 0

    Like

Share Link