Home / Journals / CMC / Vol.68, No.2, 2021
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Low Area PRESENT Cryptography in FPGA Using TRNG-PRNG Key Generation

    T. Kowsalya1, R. Ganesh Babu2, B. D. Parameshachari3, Anand Nayyar4, Raja Majid Mehmood5,*
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1447-1465, 2021, DOI:10.32604/cmc.2021.014606
    Abstract Lightweight Cryptography (LWC) is widely used to provide integrity, secrecy and authentication for the sensitive applications. However, the LWC is vulnerable to various constraints such as high-power consumption, time consumption, and hardware utilization and susceptible to the malicious attackers. In order to overcome this, a lightweight block cipher namely PRESENT architecture is proposed to provide the security against malicious attacks. The True Random Number Generator-Pseudo Random Number Generator (TRNG-PRNG) based key generation is proposed to generate the unpredictable keys, being highly difficult to predict by the hackers. Moreover, the hardware utilization of PRESENT architecture is optimized using the Dual port… More >

  • Open AccessOpen Access

    ARTICLE

    A New Medical Image Enhancement Algorithm Based on Fractional Calculus

    Hamid A. Jalab1,*, Rabha W. Ibrahim2, Ali M. Hasan3, Faten Khalid Karim4, Ala’a R. Al-Shamasneh1, Dumitru Baleanu5,6,7
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1467-1483, 2021, DOI:10.32604/cmc.2021.016047
    (This article belongs to this Special Issue: Recent Advances in Fractional Calculus Applied to Complex Engineering Phenomena)
    Abstract The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images. The captured images may present with low contrast and low visibility, which might influence the accuracy of the diagnosis process. To overcome this problem, this paper presents a new fractional integral entropy (FITE) that estimates the unforeseeable probabilities of image pixels, posing as the main contribution of the paper. The proposed model dynamically enhances the image based on the image contents. The main advantage of FITE lies in its capability to enhance the low contrast intensities through pixels’… More >

  • Open AccessOpen Access

    ARTICLE

    Wave Propagation Model in a Human Long Poroelastic Bone under Effect of Magnetic Field and Rotation

    A. M. Abd-Alla1,*, Hanaa Abu-Zinadah2, S. M. Abo-Dahab3, J. Bouslimi4,5, M. Omri6
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1485-1504, 2021, DOI:10.32604/cmc.2021.012586
    Abstract This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone. It offers a solution with an exact closed form. The authors got and examined numerically the general frequency equation for poroelastic bone. Moreover, they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation. Unlike the results of previous studies, the authors noticed little frequency dispersion in the wet bone. The proposed model will be applicable to wide-range parametric projects of bone mechanical response. Examining the vibration of surface waves in rotating… More >

  • Open AccessOpen Access

    ARTICLE

    Multi-Head Attention Graph Network for Few Shot Learning

    Baiyan Zhang1, Hefei Ling1,*, Ping Li1, Qian Wang1, Yuxuan Shi1, Lei Wu1, Runsheng Wang1, Jialie Shen2
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1505-1517, 2021, DOI:10.32604/cmc.2021.016851
    Abstract The majority of existing graph-network-based few-shot models focus on a node-similarity update mode. The lack of adequate information intensifies the risk of overtraining. In this paper, we propose a novel Multi-head Attention Graph Network to excavate discriminative relation and fulfill effective information propagation. For edge update, the node-level attention is used to evaluate the similarities between the two nodes and the distribution-level attention extracts more in-deep global relation. The cooperation between those two parts provides a discriminative and comprehensive expression for edge feature. For node update, we embrace the label-level attention to soften the noise of irrelevant nodes and optimize… More >

  • Open AccessOpen Access

    REVIEW

    Analyzing Customer Reviews on Social Media via Applying Association Rule

    Nancy Awadallah Awad1,*, Amena Mahmoud2
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1519-1530, 2021, DOI:10.32604/cmc.2021.016974
    Abstract The rapid growth of the use of social media opens up new challenges and opportunities to analyze various aspects and patterns in communication. In-text mining, several techniques are available such as information clustering, extraction, summarization, classification. In this study, a text mining framework was presented which consists of 4 phases retrieving, processing, indexing, and mine association rule phase. It is applied by using the association rule mining technique to check the associated term with the Huawei P30 Pro phone. Customer reviews are extracted from many websites and Facebook groups, such as re-view.cnet.com, CNET. Facebook and amazon.com technology, where customers from… More >

  • Open AccessOpen Access

    ARTICLE

    HLR-Net: A Hybrid Lip-Reading Model Based on Deep Convolutional Neural Networks

    Amany M. Sarhan1, Nada M. Elshennawy1, Dina M. Ibrahim1,2,*
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1531-1549, 2021, DOI:10.32604/cmc.2021.016509
    Abstract

    Lip reading is typically regarded as visually interpreting the speaker’s lip movements during the speaking. This is a task of decoding the text from the speaker’s mouth movement. This paper proposes a lip-reading model that helps deaf people and persons with hearing problems to understand a speaker by capturing a video of the speaker and inputting it into the proposed model to obtain the corresponding subtitles. Using deep learning technologies makes it easier for users to extract a large number of different features, which can then be converted to probabilities of letters to obtain accurate results. Recently proposed methods for… More >

  • Open AccessOpen Access

    ARTICLE

    Brain Cancer Tumor Classification from Motion-Corrected MRI Images Using Convolutional Neural Network

    Hanan Abdullah Mengash1,*, Hanan A. Hosni Mahmoud2,3
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1551-1563, 2021, DOI:10.32604/cmc.2021.016907
    Abstract Detection of brain tumors in MRI images is the first step in brain cancer diagnosis. The accuracy of the diagnosis depends highly on the expertise of radiologists. Therefore, automated diagnosis of brain cancer from MRI is receiving a large amount of attention. Also, MRI tumor detection is usually followed by a biopsy (an invasive procedure), which is a medical procedure for brain tumor classification. It is of high importance to devise automated methods to aid radiologists in brain cancer tumor diagnosis without resorting to invasive procedures. Convolutional neural network (CNN) is deemed to be one of the best machine learning… More >

  • Open AccessOpen Access

    ARTICLE

    General Steganalysis Method of Compressed Speech Under Different Standards

    Peng Liu1, Songbin Li1,*, Qiandong Yan1, Jingang Wang1, Cheng Zhang2
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1565-1574, 2021, DOI:10.32604/cmc.2021.016635
    Abstract Analysis-by-synthesis linear predictive coding (AbS-LPC) is widely used in a variety of low-bit-rate speech codecs. Most of the current steganalysis methods for AbS-LPC low-bit-rate compressed speech steganography are specifically designed for a specific coding standard or category of steganography methods, and thus lack generalization capability. In this paper, a general steganalysis method for detecting steganographies in low-bit-rate compressed speech under different standards is proposed. First, the code-element matrices corresponding to different coding standards are concatenated to obtain a synthetic code-element matrix, which will be mapped into an intermediate feature representation by utilizing the pre-trained dictionaries. Then, bidirectional long short-term memory… More >

  • Open AccessOpen Access

    ARTICLE

    Automatic Data Clustering Based Mean Best Artificial Bee Colony Algorithm

    Ayat Alrosan1, Waleed Alomoush2, Mohammed Alswaitti3,*, Khalid Alissa4, Shahnorbanun Sahran5, Sharif Naser Makhadmeh6, Kamal Alieyan7
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1575-1593, 2021, DOI:10.32604/cmc.2021.015925
    Abstract Fuzzy C-means (FCM) is a clustering method that falls under unsupervised machine learning. The main issues plaguing this clustering algorithm are the number of the unknown clusters within a particular dataset and initialization sensitivity of cluster centres. Artificial Bee Colony (ABC) is a type of swarm algorithm that strives to improve the members’ solution quality as an iterative process with the utilization of particular kinds of randomness. However, ABC has some weaknesses, such as balancing exploration and exploitation. To improve the exploration process within the ABC algorithm, the mean artificial bee colony (MeanABC) by its modified search equation that depends… More >

  • Open AccessOpen Access

    ARTICLE

    Machine Learning Techniques Applied to Electronic Healthcare Records to Predict Cancer Patient Survivability

    Ornela Bardhi1,2,*, Begonya Garcia Zapirain1
    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1595-1613, 2021, DOI:10.32604/cmc.2021.015326
    (This article belongs to this Special Issue: AI, IoT, Blockchain Assisted Intelligent Solutions to Medical and Healthcare Systems)
    Abstract Breast cancer (BCa) and prostate cancer (PCa) are the two most common types of cancer. Various factors play a role in these cancers, and discovering the most important ones might help patients live longer, better lives. This study aims to determine the variables that most affect patient survivability, and how the use of different machine learning algorithms can assist in such predictions. The AURIA database was used, which contains electronic healthcare records (EHRs) of 20,006 individual patients diagnosed with either breast or prostate cancer in a particular region in Finland. In total, there were 178 features for BCa and 143… More >

Share Link

WeChat scan