Open Access iconOpen Access

ARTICLE

crossmark

A Knowledge-Enriched and Span-Based Network for Joint Entity and Relation Extraction

by Kun Ding1, Shanshan Liu1, Yuhao Zhang2, Hui Zhang1, Xiaoxiong Zhang1,*, Tongtong Wu2,3, Xiaolei Zhou1

1 The Sixty-Third Research Institute, National University of Defense Technology, Nanjing, 210007, China
2 School of Computer Science and Technology, Southeast University, Nanjing, 211189, China
3 Faculty of Information Technology, Monash University, Melbourne, 3800, Australia

* Corresponding Author: Xiaoxiong Zhang. Email: email

Computers, Materials & Continua 2021, 68(1), 377-389. https://doi.org/10.32604/cmc.2021.016301

Abstract

The joint extraction of entities and their relations from certain texts plays a significant role in most natural language processes. For entity and relation extraction in a specific domain, we propose a hybrid neural framework consisting of two parts: a span-based model and a graph-based model. The span-based model can tackle overlapping problems compared with BILOU methods, whereas the graph-based model treats relation prediction as graph classification. Our main contribution is to incorporate external lexical and syntactic knowledge of a specific domain, such as domain dictionaries and dependency structures from texts, into end-to-end neural models. We conducted extensive experiments on a Chinese military entity and relation extraction corpus. The results show that the proposed framework outperforms the baselines with better performance in terms of entity and relation prediction. The proposed method provides insight into problems with the joint extraction of entities and their relations.

Keywords


Cite This Article

APA Style
Ding, K., Liu, S., Zhang, Y., Zhang, H., Zhang, X. et al. (2021). A knowledge-enriched and span-based network for joint entity and relation extraction. Computers, Materials & Continua, 68(1), 377-389. https://doi.org/10.32604/cmc.2021.016301
Vancouver Style
Ding K, Liu S, Zhang Y, Zhang H, Zhang X, Wu T, et al. A knowledge-enriched and span-based network for joint entity and relation extraction. Comput Mater Contin. 2021;68(1):377-389 https://doi.org/10.32604/cmc.2021.016301
IEEE Style
K. Ding et al., “A Knowledge-Enriched and Span-Based Network for Joint Entity and Relation Extraction,” Comput. Mater. Contin., vol. 68, no. 1, pp. 377-389, 2021. https://doi.org/10.32604/cmc.2021.016301

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2393

    View

  • 1554

    Download

  • 0

    Like

Share Link