Open Access
ARTICLE
Intelligent Real-Time IoT Traffic Steering in 5G Edge Networks
1 Department of Software Convergence, Soonchunhyang University, Asan, 31538, Korea
2 Department of Computer Software Engineering, Soonchunhyang University, Asan, 31538, Korea
* Corresponding Author: Seokhoon Kim. Email:
Computers, Materials & Continua 2021, 67(3), 3433-3450. https://doi.org/10.32604/cmc.2021.015490
Received 24 November 2020; Accepted 09 January 2021; Issue published 01 March 2021
Abstract
In the Next Generation Radio Networks (NGRN), there will be extreme massive connectivity with the Heterogeneous Internet of Things (HetIoT) devices. The millimeter-Wave (mmWave) communications will become a potential core technology to increase the capacity of Radio Networks (RN) and enable Multiple-Input and Multiple-Output (MIMO) of Radio Remote Head (RRH) technology. However, the challenging key issues in unfair radio resource handling remain unsolved when massive requests are occurring concurrently. The imbalance of resource utilization is one of the main issues occurs when there is overloaded connectivity to the closest RRH receiving exceeding requests. To handle this issue effectively, Machine Learning (ML) algorithm plays an important role to tackle the requests of massive IoT devices to RRH with its obvious capacity conditions. This paper proposed a dynamic RRH gateways steering based on a lightweight supervised learning algorithm, namely K-Nearest Neighbor (KNN), to improve the communication Quality of Service (QoS) in real-time IoT networks. KNN supervises the model to classify and recommend the user’s requests to optimal RRHs which preserves higher power. The experimental dataset was generated by using computer software and the simulation results illustrated a remarkable outperformance of the proposed scheme over the conventional methods in terms of multiple significant QoS parameters, including communication reliability, latency, and throughput.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.