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Abstract: Side-channel attacks have recently progressed into software-induced
attacks. In particular, a rowhammer attack, which exploits the characteristics
of dynamic random access memory (DRAM), can quickly and continuously
access the cells as the cell density of DRAM increases, thereby generating a dis-
turbance error affecting the neighboring cells, resulting in bit flips. Although a
rowhammer attack is a highly sophisticated attack in which disturbance errors
are deliberately generated into data bits, it has been reported that it can be
exploited on various platforms such as mobile devices, web browsers, and vir-
tual machines. Furthermore, there have been studies on bypassing the defense
measures of DRAM manufacturers and the like to respond to rowhammer
attacks. A rowhammer attack can control user access and compromise the
integrity of sensitive data with attacks such as a privilege escalation and an
alteration of the encryption keys. In an attempt to mitigate a rowhammer
attack, various hardware- and software-based mitigation techniques are being
studied, but there are limitations in that the research methods do not detect
the rowhammer attack in advance, causing overhead or degradation of the
system performance. Therefore, in this study, a rowhammer attack detection
technique is proposed by extracting common features of rowhammer attack
files through a static analysis of rowhammer attack codes.
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side-channel attack; bit flip

1 Introduction

Side-channel attacks have recently developed into other attack types not only with the data
gained through direct access to hardware but also with software-induced hardware data. Among
such attacks, a rowhammer attack, a fault attack on dynamic random access memory (DRAM),
was reported that can occur in both double data rate (DDR) 3 and DDR4 synchronous dynamic
random access memory (SDRAM), which shows the feasibility of a software-induced hardware
attack. The first study to exploit the rowhammer attack demonstrated that it was possible to
access DRAM using malicious programs in Intel and Advanced RISC Machine (ARM) systems,
thereby inducing disturbance errors [1]. The Google Project Zero team demonstrated an attack in
which the programs in a user level x86-64 Linux environment gained kernel privileges. The research
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also proved that a rowhammer attack can be executed with a native client (NaCI) program
and that the system calls of the host operating system (OS) can be directly called by acquiring
permission to escape from the x86-64 sandbox of the NaCI. In addition, a rowhammer attack
was exploited in x86-64 Linux processes and the rowhammer escalated the privilege to access all
physical memory [2]. Moreover, a study was conducted to take over a server that was vulnerable
to a rowhammer attack using a web browser with JavaScript codes. The study provided a proof-
of-concept that web-browser-based rowhammer attacks are possible [3]. It has also been reported
that it is possible to trigger Drammer attacks, one of the attack types that exploits a rowhammer
by using a malicious application at the user level on a mobile device. It does not require user
privileges or software vulnerabilities [4]. In addition, a study was conducted on the throwhammer
attack, which can trigger and exploit rowhammer bit flips directly from a remote machine that is
connected to a remote direct memory access (RDMA) network. This is accomplished by sending
only network packets. The study demonstrated how a malicious attacker can exploit rowhammer
bit flips to execute codes on a remote key-value server application [5].

As described above, rowhammer attacks have been proven to be exploited in various platforms,
and can damage the system memory and system itself, or grant full control to an attacker. In
response to such a variety of rowhammer attacks, efforts are being made to improve DRAM chips
so that they are no longer vulnerable, or to correct the errors caused by the rowhammer using an
error correcting code (ECC). Alternatively, rowhammer-prone cells can be remapped or retired by
increasing the refresh rate or through a static or dynamic post-manufacturing analysis. In addition,
hammered cells during runtime can be identified and refreshed [6]. However, although numerous
studies have been conducted to monitor DRAM cells to detect a rowhammer or mitigate an
attack, no studies have been conducted to detect a rowhammer in advance. Meanwhile, the number
of software-induced hardware attacks has increased in recent years. Thus, there is an increasing
need for studies on the detection of software-induced rowhammer attacks before they occur.

In this study, we propose a technique to detect rowhammer attacks in advance using static
analysis. Section 2 describes the DRAM architecture, which is the target of a rowhammer attack.
It defines the mechanism of a rowhammer attack as well as techniques to mitigate such an inci-
dent. Further, the IDA Python module used in the proposed technique for detecting rowhammer
attacks is also described. In Section 3, as the proposed mechanism of this study, we conduct
static analysis of rowhammer attacks and propose a technique for their detection. In Section 4,
experimental results and analysis of the proposed techniques for detecting a rowhammer attack
are provided. Finally, concluding remarks are given in Section 5.

2 Related Works

2.1 Analysis of DRAM for Rowhammer Mechanism
A rowhammer attack exploits the structure of the cells adjacent to the DRAM. The increasing

cell density of DRAM is a result of technological advancements; it can enable repeated access to
rows, causing bit flips in neighboring memory rows [1]. A bit flip is a phenomenon in which a
repeatedly accessed memory row generates an electrical disturbance and affects adjacent rows. As
such, the hammering process can cause bit flips that affect the memory rows and consequently
change the bits in memory. This section describes the DRAM architecture, which enables bit flips,
and the mechanism of a rowhammer attack.
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2.1.1 Dynamic Random Access Memory (DRAM) Architecture
In a computing environment, the main memory subsystem consists of DRAM and a mem-

ory controller. As shown in Fig. 1, the DRAM and processor are interconnected by channels
and are controlled by the memory controller [1–4,7]. The main components of the DRAM are
as follows:

• Channel: As a data transfer pathway between DRAM and the memory controller, a single
channel has a bandwidth of 64-bits.
• Rank: Each rank consists of multiple DRAM banks that share an internal bus for
data reading and writing. In general, DRAM is composed of two ranks consisting of
eight banks.
• Memory Controller: A memory controller can interact with DRAM ranks by time-
multiplexing the I/O bus of the channel with a rank. As the I/O bus is shared, a memory
controller serializes the accesses to different ranks of the same channel. The functions
performed by the memory controllers are as follows:

—Convert a process or system request into a memory system command
—Generate a timing sequence by determining the priority of the command of the
memory system

—Send commands such as read/write/refresh to the DRAM chip
—Retrieve or store data for the processor or system I/O

• Chip: A memory chip consists of DRAM banks and is an integrated circuit that can
store data.
• Bank: As a component of a memory chip, a bank shares all internal data and a command
bus within the chip. The bank is composed of circuits in which a capacitor stores electricity,
and a transistor, which is a semiconductor device, acts as an amplifier. They are combined
in the form of rows and columns.
• Command Bus: A command bus is used to transmit and receive data between a DRAM
memory chip and a memory controller.

Figure 1: A type of DRAM-based system

As shown in Fig. 2, a DRAM chip consists of a wordline, which is a horizontal row, and
a bitline which is a vertical column, with cells organized in rows and columns. In other words,
DRAM chips are composed of a two-dimensional array of cells, and each cell has a transistor
and a capacitor that stores data. When the capacitor is charged, the data are stored as a 1, and
when it is discharged, the data is stored as a 0. As such, DRAM records the data by storing
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charges in the capacitor. Because the capacitor leaks charge over time, DRAM requires a periodic
refresh operation to restore its electrical charge in the cells.

Figure 2: Architecture of DRAM chips

2.1.2 Disturbance Error
As technologies have advanced, the cell density of DRAM has increased and the cells are no

longer isolated, causing them to electrically interact with each other [7]. Therefore, a refresh oper-
ation to restore charge in a DRAM cell caused by charge leakages affects the neighboring cells,
causing disturbance errors. Recently, an attack called a rowhammer attack has been reported that
applies a bit flip attack by deliberately generating such disturbance errors [1]. If disturbance errors
can be induced, the rowhammers can be exploited in system-level attacks to escalate privileges,
leak confidential data, and cause a denial of service. Accordingly, hardware manufacturers have
recently adopted a target row refresh (TRR) to protect against rowhammer attacks and reduce
the vulnerability of DRAM chips. In addition, memory controller and system manufacturers have
implemented countermeasures such as increasing the refresh rate.

2.2 Mechanism of Rowhammer Attack
The mechanism of a rowhammer attack involves deliberately generating a disturbance error in

DRAM, as described ealier. Tab. 1 displays the assembly codes for generating disturbance errors.
The bits that cause multiple flips are identified through these codes [1].

Table 1: Rowhammer attack code

Code:

1 mov(X), %eax //read values of address X and Y
2 mov(Y), %ebx
3 clflush(X) //evict data in the cache
4 clflush(Y)
5 jmp code //repeat above stage
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The steps involved in the rowhammer attack mechanism are as follows:

Step 1: Two mov instructions (codes 1 and 2 in Tab. 1) read data from the DRAM at
addresses X and Y and load the data into the register and cache.

Step 2: Two clflush instructions (codes 3 and 4 in Tab. 1) evict the data that were loaded in
the cache, enabling data to be read directly from DRAM rather than from the cache.

Step 3: Finally, the iteration of these instructions allows repeated hammering, a process
of memory reading from DRAM, and thereby enables bit flips to be applied by causing
disturbance errors.

To generate a disturbance error by accessing addresses X and Y as above, addresses X and Y
must be mapped to the same bank and to different rows simultaneously. To deliberately generate
a disturbance error by accessing the desired address, the address in the adjacent row of the same
bank must be identified in advance. Accordingly, the virtual address needs to be mapped to the
physical address. Therefore, a predictable method or a probabilistic method is used to identify the
corresponding addresses. It is also necessary to bypass the cache because a quick activation of the
rows in each bank of DRAM is essential to create the bit flips. To bypass the cache, it needs to
clear the cache line using the clflush instruction. Consequently, the codes in Tab. 1 can be injected
into other programs or used to intercept the system control by utilizing a bit flip attack.

2.3 Analysis of Mitigating Rowhammer Attacks
Recently, studies have been conducted to mitigate rowhammer attacks by monitoring memory

alteration using additional cells. In this section, previous studies on the mitigation of rowhammer
attacks are described.

2.3.1 Mitigating Techniques on Hardware
The hardware-based techniques used for the mitigation of rowhammer attacks are

as follows:

• CRA and PRA: Counter-based row activation (CRA) and probabilistic row activation
(PRA) have been proposed to mitigate rowhammer attacks. CRA employs a counter to
calculate the number of activations of each row, and if the corresponding counter exceeds
the hammering threshold, a dummy activation is actively transmitted to refresh the data.
PRA is used to reduce the overhead that is incurred during CRA, which facilitates the
generation of a dummy activation probabilistically for all memory accesses. CRA and PRA
require an additional counter to count the number of hammerings of the victim rows [8].
For example, if there is an 8 GB memory system with one million rows, 2 MB are required
for the total counter size. Because this requires additional memory consumption, mitigation
techniques using CRA and PRA can degrade the performance.
• GuardION: GuardION defends against direct memory access (DMA)-based attacks in an
ARM environment. This method enables buffers to be physically isolated by adding two
empty rows called guard rows. It eliminates the possibility of a bit flip because the victim
rows can be arranged more than one row away from the attacked rows [9]. However,
GuardION consumes additional DRAM memory of the user’s device to add the guard
rows, which can affect the device performance.
• ECC memory: To defend against rowhammer attacks, error correcting code (ECC) memory
is introduced in each rank of DRAM. This method adds a parity bit for detecting errors
occurring in data bits and a control bit for transmitting whether an error has occurred.
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ECC memory was used to detect and correct errors that could occur owing to the external
environment of DRAM, and the introduction of ECC memory became an obstacle for
exploitation during a rowhammer attack. However, it has been reported that an attack
called ECCploit can be used to conduct a rowhammer attack even in ECC memory-added
DRAM [10].
• TRR: In response to rowhammer attacks, a target row refresh (TRR) has been implemented

in a DDR4 model to refresh adjacent rows when an access is attempted beyond the thresh-
old value. However, even in TRR-applied DRAM, rowhammer attacks can be reactivated
by enabling bit flip attacks through new hammering patterns [11].

The aforementioned methods that use hardware to mitigate rowhammer attacks require
additional hardware resources to detect or monitor errors, which can degrade the performance
of existing devices. Furthermore, the rowhammer may be reactivated despite the application
of rowhammer attack mitigation techniques to DRAM. Tab. 2 summarizes the hardware-based
techniques used for mitigating rowhammer attacks.

Table 2: Analysis of mitigating rowhammer attacks based on hardware

Mitigating
technique

Description Disadvantages

CRA and
PRA

Counters are added to calculate the
number of activations of each row to
apply a data refresh based on the
threshold of the number of hammerings

Degradation of memory performance
from memory overhead and
additional counters

GuardION Guard rows are added to reduce the
possibility of rowhammer occurrence
through physical isolation of buffers

Degradation of memory performance
from the use of memory resources
in DRAM

ECC
memory

A parity bit that detects errors in a data
bit is added to detect and correct
memory errors in DRAM

Degradation of memory performance
from additional bit adoption and
calculation, and the possibility of
bypassing through ECCploit attack

TRR
(target
row
refresh)

The number of row activations is
calculated, and if the corresponding
count exceeds the threshold, a data
refresh is used

Possibility of bypassing through new
hammering patterns such as TRRespass

2.3.2 Mitigating Techniques Based on Software
The software-based techniques used for mitigation of rowhammer attacks are as follows:

• ANVIL: ANVIL, a software-based method for mitigating rowhammers, detects rowhammer
attacks by tracking the access location of DRAM using an existing hardware performance
counter. Subsequently, victim rows within the vicinity are selectively refreshed to prevent
hammering operations on the victim rows that are frequently accessed through rowhammer
attacks [12]. However, because this method uses existing hardware counters to dynamically
detect and respond to attacks, an additional system overhead may occur, which also requires
modification in the Linux kernel [13].
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• Technique using skewed hash tree: The occurrence of a bit flip is detected through a secure
hash algorithm-3 (SHA-3) Keccack hash function-based dynamic integrity tree structure
and a sliding window [14]. This has been proposed to generate minimal overhead and
achieve cost efficiency, but requires a memory controller (MC) that stores the root hash and
is not at risk of alteration.
• Technique using deep learning: Another study adopted a convolutional neural network
(CNN) model, which is a deep learning model, to analyze the access patterns of DRAM in
order to predict the rows where rowhammer attacks can occur in advance [13]. However, it
requires exploiting various rowhammers in advance for analysis and training of the access
patterns of DRAM.

As such, the techniques that use software to mitigate rowhammer attacks require the process
of monitoring DRAM to adjust the refresh rate or predicting the rows in which an attack may
occur by learning the DRAM access patterns. Tab. 3 below summarizes software-based techniques
for mitigating rowhammer attacks.

Table 3: Analysis of mitigating rowhammer attacks based on software

Mitigating
technique

Description Disadvantage

ANVIL A rowhammer attack can be detected
through the location of rows
frequently accessed by DRAM using
the existing hardware
performance counters

System overhead may be inccured and
a modification of the Linux kernel
is required

Technique
using skewed
hash tree

Bit flips can be detected through a
dynamic integrity tree structure and
sliding window

Memory controller is needed to store
the root hash and the safety of the
MC should be ensured

Technique
using deep
learning

Rows, where a rowhammer attack
could occur, can be predicted by
learning the access patterns of DRAM

The training of patterns exploiting
various rowhammers is required for
deep learning

2.4 IDA Python
The interactive disassembler (IDA) is most widely known as a disassembler and is a tool that

can be used to perform static analysis of binaries [15]. IDA Python is an extension of IDA, which
uses the Python script to help with binary analysis. This study uses IDA Python to propose a
static analysis and detection technique for rowhammer attack files, and the main modules used
are as shown in Tab. 4.
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Table 4: Module of IDA python

Module of IDA python Input Output

FindText() Address to start retrieval,
string to retrieve, etc.

When the string is found, the address
containing the corresponding string

GetFunctionName() Specific address The name of the function that the input
address belongs to

GetDisasm() Specific address The assembly code that corresponds to
the address received as the input

3 Proposed Detection Technique of Rowhammer Attacks

This section analyzes the common features of various rowhammer attack files through a static
analysis on such files that use x86-64 instructions. Based on this, we propose a technique for
detecting rowhammer attacks.

3.1 Premise of the Dataset
Files that trigger the rowhammers used for actual attacks are limited because of the difficulty

of conducting an attack in a real-world environment. Furthermore, the number of proof-of-
concept rowhammer files that verify the operability in a variable environment is limited. Among
them, the attack codes of the rowhammer files using an x86-64 instruction are also limited.
Currently, there are six reported attack codes [2,3,16].

3.2 Static Analysis for Detecting Rowhammer Attacks
In this study, a static analysis was used to detect a rowhammer attack. The analysis was

conducted to analyze the attack files without direct execution and facilitates the search for
suspicious features and codes [17–19]. Accordingly, the number of times that the opcodes and
application programming interfaces (APIs) were used was applied to analyze the features through
static analysis based on rowhammer attack files using x86-64 instructions.

Fig. 3 shows the assembly codes of an actual rowhammer attack file. In an actual attack
file, mov and clflush instructions access the same addresses to reload the cells of DRAM, and
the number of iterations of the corresponding code can be analyzed. Tab. 5 shows the analysis
results for the number of opcodes and APIs used in each attack file. Here, for mov and clflush,
we analyzed the number of times the opcodes and API were used to access the same memory. In
addition, for “open,” we used the number of times the API accessed “/proc/self/pagemap.”

As shown in Tab. 5, the common opcodes and APIs used in all attack files are mov,
clflush, mmap, and open (“/proc/self/pagemap”), which enable hammering attacks. Furthermore,
the opcodes and APIs used in each attack file are as follows:

• mov and clflush: Mov and clflush used in the static analysis proposed in this study deal
with memory access, as shown in Tab. 1. Here, mov is an opcode used to access the input
address, and clflush, an x86 instruction, is used to remove the cache line containing the
address received as an input. Therefore, the re-load operation can be executed iteratively
in the memory row of DRAM if the same memory is accessed repeatedly through the
mov and the cache line is removed through clflush. In other words, they can affect the
neighboring cells of DRAM to induce a bit flip, which can intentionally cause a disturbance
error [1].
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• mmap: Mmap requests the kernel to perform mapping according to the given memory
length at the starting position of the given object [20]. Mapping is performed without an
empty memory for a rowhammer attack through the corresponding API.
• cupid: Cpuid informs hardware information such as the model, manufacturer, and pro-
cessor of the user device [20]. It is used to exploit rowhammers that operates under
certain environments.
• rdtscp: Rdtscp is a command that returns the TSC value of the process. It is a serial-
ization command that is executed sequentially. Thus, it does not facilitate parallel execu-
tion [20]. The corresponding command is used to measure the memory access time during
a rowhammer attack.
• mfence: Mfence is a command that prevents the parallel execution of memory loading
and storing of commandsexecution when consecutive memory commands are executed [20].
Thus, it ensures that the data are completely flushed.
• open: The open function for /proc/self/pagemap is used in the proposed technique. Attack
files use the pagemap interface to find attack rows for each victim row [9].

Figure 3: Assembly code of a rowhammer attack

Table 5: Number of opcodes and APIs from rowhammer attack file

Attack file mov clflush mmap cpuid rdtscp mfence open

Double side rowhammer 1,024,000 1,024,000 1 – – – 2
Run_rohammer 1,200,000 1,200,000 1 – 1 2 1
Pinpoint rowhammer 1,200,000 1,200,000 1 – – 1 1
Rowhammer-haswsell 1,000,000 1,000,000 1 1 1 – 1
Rowhammer-ivy 1,000,000 1,000,000 1 1 1 – 1
Rowhammer-sandy 1,000,000 1,000,000 1 1 1 – 1
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3.3 Detection Technique of Rowhammer Attacks
The technique proposed in this paper, shown in Fig. 4, is based on the number of opcodes

and APIs, that are analyzed in the rowhammer attack files. It consists of mov, clflush, mmap, and
open (“/proc/self/pagemap”), which enable hammering.

Step 1 Open(“/proc/self/pagemap”):

If the input file uses the open API and simultaneously accesses “/proc/self/pagemap” from the
open API, it is determined that the input file uses pagemap. Because the use of pagemap alone
cannot determine the rowhammer, the presence of a rowhammer is not determined in this step.
If the input file access the pagemap, there is a possibility that it is searching the victim rows to
conduct a rowhammer attack: hence, the process proceeds to the subsequent step (Step 2). This
can be implemented as shown in Tab. 6, which can be used to determine whether the correspond-
ing attack file uses “/proc/self/pagemap” through FindText, and whether the corresponding string
is called from the open API through the GetFunctionName module.

Figure 4: Flow chart for detecting rowhammer

Step 2 Memory Mapping:

If the input file applies memory mapping using the mmap API function, it is determined
that the input file conducts memory mapping. The mmap function requests the kernel to map the
object pointed by the file descriptor into memory, which can be used not only in rowhammers
but also in various executable files. Accordingly, because the use of nmap alone cannot determine
the rowhammer, the presence of rowhammer is not determined in this step. Because there is a
possibility of a pre-memory mapping step for executing the rowhammer if the input file applies
memory mapping, the process proceeds to the subsequent step (Step 3). This can be implemented
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as shown in Tab. 7, which determines whether mmap is included in the list of functions used in
the corresponding attack file by using the GetFunctionName module.

Table 6: Pseudo code of Step 1

Find_pagemap:

1 WHILE start address< end address:
2 start address← idc.FindText(“/proc/self/pagemap”)
3 IF start address does not exist, “/proc/self/pagemap” cannot be found
4 ELSE IF start address is called in “open,” RETURN TRUE
5 start address← next instruction address
6 RETURN FALSE

Table 7: Pseudo code of Step 2

Find_mmap:

1 FOR all functions used in input file:
2 func_name←GetFunctionName(func)
3 IF func_name is “mmap,” RETURN TRUE
5 ELSE, RETURN FALSE

Step 3 Re-read and clflush on the same address:

If a memory read operation is conducted using the mov opcode for the same address, and the
cache line is evicted by using the clflush opcode, this process is determined as a re-read operation.
If it is determined as a re-read operation, the process proceeds to Step 4 to analyze the number of
hammerings. Also, if it is decidedthat the re-read operation is not applied. it determines that the
given file is a file other than a rowhammer file. This process is implemented as shown in Tab. 8.
If the mov command is used in the same memory register in an adjacent location after con-
firming that clflush is used through the FindText module, it is determined as a re-read operation
for hammering.

Step 4 Number of hammerings≥ 1, 000, 000:

Step 4 is conducted to analyze the number of re-read operations in Step 3. In Step 4, the file
is determined as a rowhammer file if the number of hammerings in which the re-read operation is
repeated is 1,000,000 or more. If the number is less than 1,000,000, it is determined that the given
file is not a rowhammer file. The threshold is set to 1,000,000 because the number of re-reads
using mov and clflush in the read rowhammer file is 1,000,000 according to the static analysis of
the rowhammer file, as shown in Tab. 5. Step 4 can be implemented as shown in Tab. 9, and the
label of the basic block that operates the hammering of Step 3 is obtained through the Flowchart
module. If the corresponding label uses a jump command such as jmp, the use is determined to
be repeated, and the number of iterations through the cmp command before the jump command
is checked.
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Table 8: Pseudo code of Step 3

Find_hammering:

1 while start address< end address:
2 start address← idc.FindText(“clflush”)
3 IF start address does not exist, “clflush” cannot be found
4 ELSE
5 mov address← idc.FindText(“mov”)
6 IF the corresponding address does not exist, a re-read is not conducted
7 ELSE
8 IF any command corresponding to mov address accesses a register such as clflush,
9 go to number_hammering
10 ELSE, re-read is not performed
11 start address← next instruction address
12 RETURN

Table 9: Pseudo code of Step 4

Number_hammering:

1 Label←Label of basic block in which mov and clflush are located
2 IF a label is called in a jump statement
3 cmp address← idc.FindText(cmp statement prior to a jump statement)
4 IF the comparison number of “cmp” is 1,000,000 or more
5 RETURN it is a rowhammer
6 ELSE
7 RETURN it is not a rowhammer

4 Analysis of Proposed Detection Technique of Software-Induced Rowhammer Attacks

• Malicious File: any malicious software executable file, other than rowhammer attack file
• Normal File: any normal software executable file, other than rowhammer attack file

To evaluate the method proposed in this study, test sets were established, as shown in Tab. 10,
including six attack files exploiting a rowhammer, six malicious files excluding a rowhammer, and
six normal files such as a chrome-sandbox. A rowhammer attack file is an attack file that uses an
x86-64 instruction, the proof-of-concept code of which was obtained from GitHub. Subsequently,
the corresponding code was compiled to obtain a total of six files. Malicious files without a
rowhammer were also obtained from GitHub, and these files included a spectre attack, which is a
software-induced hardware attack. A spectre attack was included in the input file because clflush,
which is used in rowhammer exploits, was applied owing to the existence of Flush + Reload
attack [21]. Application programs that can be typically obtained were used as normal files. For all
input files, files using the same x86 instruction as the selected rowhammer attack file were used.
Tab. 10 shows the files used to analyze the proposed detection method.
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Table 10: Input for analysis of proposed detection technique

Type of file Index Name of file

A. Rowhammer attack file 1 Double side rowhammer
2 Run_rohammer
3 Pinpoint rowhammer
4 Rowhammer-haswsell
5 Rowhammer-ivy
6 Rowhammer-sandy

B. Malicious file 1 Spectre
2 Eggshell
3 Big_file_writer
4 Fork_bomb
5 Mem_killer
6 Sleeper

C. Normal file 1 Apt
2 Basename
3 Chrome-sandbox
4 Dpkg
5 gettext
6 lsattr

4.1 Computation Environment
Tab. 11 shows the computation environment applied for evaluating the proposed technique.

Table 11: Computation environment

Operating system Windows 10 pro

CPU Intel® Xen® W-2123
RAM 64 GB
IDA Pro version 6.8.150423 (64-bits)
Python version 3.8

4.2 Detecting Simulation Results
When the results of the rowhammer attack files were analyzed through the proposed detection

technique of the rowhammer attack described in Section 3.3, the following results were derived.
When the rowhammer detection technique proposed in this study was applied, six actual rowham-
mer attack files, which corresponded to true positives, were detected as rowhammer files, and 12
rowhammer attack files, which corresponded to true negatives, were detected as non-rowhammer
files, as shown in Tab. 12. Furthermore, none of the results was detected as a false positive or
false negative, indicating that false detections and non-detections did not occur in the rowhammer
detection technique. Thus, the comparison with the input of the evaluation confirmed that all
input values were normally detected.
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Table 12: Confusion matrix of evaluation

Confusion matrix True condition

Condition positive Condition negative

Predicted condition Predicted condition positive 6 0
Predicted condition negative 0 12

4.2.1 Condition Positive—Predicted Condition Positive (True Positive)
According to the results of detecting the actual rowhammer files (A.1–A.6 in Tab. 10) as a

rowhammer file, the results for six input rowhammer files are identified as shown in Fig. 5.

Figure 5: Results of applying the proposed technique to the rowhammer files (A.1∼A.6)

As shown, all rowhammer attack files executed in the x86-64 instruction were accurately
detected. All rowhammer attack files were confirmed as using the API that accessed the pagemap
and conducted memory mapping through open (“/proc/self/pagemap”). Furthermore, by identify-
ing the mov and clflush commands that access the same register in all attack files, it was possible
to determine whether the re-read operation was performed. Although the number of re-read
hammerings was different for each attack file, the detection was possible because the number of
hammerings was determined to be 1,000,000 or more.
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4.2.2 Condition Negative—Predicted Condition Negative (True Negative)
According to the results of detecting non-rowhammer files (B.1–B.6, C.1–C.6 in Tab. 10) as

non-rowhammer files, the normal files, or malware files other than the rowhammer files, were not
detected as rowhammer attack files because of the missing process of accessing pagemap used
to generate a rowhammer attack, such as in Figs. 6 and 7. Moreover, the results of analyzing
the number of hammerings for the corresponding files confirmed that the hammering process for
executing the bit flip was not applied.

Figure 6: Results of applying the proposed technique to the malicious normal files (B.1∼B.6)
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Figure 7: Results of applying the proposed technique to the normal files (C.1∼C.6)

• Condition Positive—Predicted Condition Positive: Result of detecting an actual rowhammer
file as a rowhammer file (true positive)
• Condition Negative—Predicted Condition Positive: Result of detecting an actual non-

rowhammer file as a rowhammer file (false positive)
• Condition Positive—Predicted Condition Negative: Result of detecting an actual rowham-

mer file as a non-rowhammer file (false negative)
• Condition Negative—Predicted Condition Negative: Result of detecting an actual non-

rowhammer file as a non-rowhammer file (true negative).
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Tab. 12 shows the results of deriving the confusion matrix through the input values provided
in Tab. 10 for evaluation. No results were confirmed to be Condition Negative—Predicted Condi-
tion positive (false positive) or Condition Negative—Predicted Condition Negative (false negative),
indicating that the technique proposed in this study can successfully detect a rowhammer attack.

5 Conclusion

According to recent studies, next-generation DRAM chips are vulnerable to rowhammer
attacks, which can be carried out on various platforms (e.g., Android, ARM, and Linux) and
environments (e.g., JavaScript, and network packets), which can be used in various attacks such
as kernel privilege escalation, full control, and encryption key tampering. Thus, to mitigate
rowhammer attacks, various studies are being conducted, such as adjusting the refresh rate of
the DRAM chip, or adding a guard row by monitoring the number of row activations. How-
ever, these techniques require continuous monitoring, which can cause overhead or additional
hardware resources, resulting in performance degradation. Although efforts are being made to
cope with rowhammer attacks, despite the performance degradation and overhead, it is known
that it is extremely difficult to mitigate these attacks while generating less overhead in terms
of efficiency [6]. Moreover, it is known that the selective refresh-based rowhammer mitigation
techniques have difficulty in establishing an optimal refresh rate [22]. In addition, DRAM and
memory controller companies are applying countermeasures to devices to cope with rowhammer
attacks. Nevertheless, attacks such as ECCploit and TRRespass have appeared to be able to bypass
the countermeasures. As process technology scales have continued to increase, it has become more
difficult to mitigate rowhammer attacks. Thus, it is necessary to cope with rowhammer attacks
through research detecting rowhammers in advance without inducing overhead.

The proposed technique applies a static detection method for rowhammers using an x86-64
instruction, which is the first study on detecting rowhammers in advance because rowhammers can
be exploited in attacks such as a privilege escalation and encryption key alteration. In this paper,
we applied six datasets to simulate the proposed technique. Datasets that trigger the rowhammers
used for actual attacks are limited because of the difficulty of conducting an attack in a real-
world environment. Furthermore, the number of rowhammer files that were collected was limited
to the number of proof-of-concept files that proved the method operation in a variable environ-
ment. Among them, the attack codes of the rowhammer files using an x86-64 instruction were
also limited.

If the proposed static-analysis-based detection technique is applied based on an opcode and
API analysis using various platforms such as Android and ARM, which have been proven to be
exploitable by rowhammers, the method will help with the classification of existing malicious codes
as well as a pre-detection of rowhammer attacks operating in various environments. Furthermore,
to cope with various software-induced hardware fault attacks as well as rowhammer attacks,
studies on detection prior to attack file exploitation of file vulnerabilities are needed, as are studies
on adding hardware resources or hardware monitoring.
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