Open Access iconOpen Access

ARTICLE

crossmark

Intelligent Fusion of Infrared and Visible Image Data Based on Convolutional Sparse Representation and Improved Pulse-Coupled Neural Network

Jingming Xia1, Yi Lu1, Ling Tan2,*, Ping Jiang3

1 School of Artificial Intelligence, Nanjing University of Information Science & Technology, Nanjing, 210044, China
2 School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing, 210044, China
3 Western University, London, N6A 3K7, Canada

* Corresponding Author: Ling Tan. Email: email

Computers, Materials & Continua 2021, 67(1), 613-624. https://doi.org/10.32604/cmc.2021.013457

Abstract

Multi-source information can be obtained through the fusion of infrared images and visible light images, which have the characteristics of complementary information. However, the existing acquisition methods of fusion images have disadvantages such as blurred edges, low contrast, and loss of details. Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform (NSST). Furthermore, the low-frequency subbands were fused by convolutional sparse representation (CSR), and the high-frequency subbands were fused by an improved pulse coupled neural network (IPCNN) algorithm, which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm, improving the performance of sparse representation with details injection. The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.

Keywords


Cite This Article

APA Style
Xia, J., Lu, Y., Tan, L., Jiang, P. (2021). Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulse-coupled neural network. Computers, Materials & Continua, 67(1), 613-624. https://doi.org/10.32604/cmc.2021.013457
Vancouver Style
Xia J, Lu Y, Tan L, Jiang P. Intelligent fusion of infrared and visible image data based on convolutional sparse representation and improved pulse-coupled neural network. Comput Mater Contin. 2021;67(1):613-624 https://doi.org/10.32604/cmc.2021.013457
IEEE Style
J. Xia, Y. Lu, L. Tan, and P. Jiang, “Intelligent Fusion of Infrared and Visible Image Data Based on Convolutional Sparse Representation and Improved Pulse-Coupled Neural Network,” Comput. Mater. Contin., vol. 67, no. 1, pp. 613-624, 2021. https://doi.org/10.32604/cmc.2021.013457



cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2215

    View

  • 1308

    Download

  • 0

    Like

Share Link