Open Access
ARTICLE
Extension of Direct Citation Model Using In-Text Citations
1 Institute of Computing, Kohat University of Science and Technology, Kohat, 26000, Pakistan
2 Department of Computer Science, NAMAL Institute, Mianwali, 42250, Pakistan
3 College of Computer Science and Information Technology, Albaha University, Al Baha, Saudi Arabia
* Corresponding Author: Abdul Shahid. Email:
Computers, Materials & Continua 2021, 66(3), 3121-3138. https://doi.org/10.32604/cmc.2021.013809
Received 22 August 2020; Accepted 19 October 2020; Issue published 28 December 2020
Abstract
Citations based relevant research paper recommendations can be generated primarily with the assistance of three citation models: (1) Bibliographic Coupling, (2) Co-Citation, and (3) Direct Citations. Millions of new scholarly articles are published every year. This flux of scientific information has made it a challenging task to devise techniques that could help researchers to find the most relevant research papers for the paper at hand. In this study, we have deployed an in-text citation analysis that extends the Direct Citation Model to discover the nature of the relationship degree-of-relevancy among scientific papers. For this purpose, the relationship between citing and cited articles is categorized into three categories: weak, medium, and strong. As an experiment, around 5,000 research papers were crawled from the CiteSeerX. These research papers were parsed for the identification of in-text citation frequencies. Subsequently, 0.1 million references of those articles were extracted, and their in-text citation frequencies were computed. A comprehensive benchmark dataset was established based on the user study. Afterwards, the results were validated with the help of Least Square Approximation by Quadratic Polynomial method. It was found that degree-of-relevancy between scientific papers is a quadratic increasing/decreasing polynomial with respect to-increase/decrease in the in-text citation frequencies of a cited article. Furthermore, the results of the proposed model were compared with state-of-the-art techniques by utilizing a well-known measure, known as the normalized Discount Cumulative Gain (nDCG). The proposed method received an nDCG score of 0.89, whereas the state-of-the-art models such as the Content, Bibliographic-coupling, and Metadata-based Models were able to acquire the nDCG values of 0.65, 0.54, and 0.51 respectively. These results indicate that the proposed mechanism may be applied in future information retrieval systems for better results.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.