Open Access iconOpen Access

ARTICLE

crossmark

Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features

Diyar Qader Zeebaree1, Adnan Mohsin Abdulazeez2, Dilovan Asaad Zebari3,*, Habibollah Haron4, Haza Nuzly Abdull Hamed4

1 Research Center of Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq
2 Presidency of Duhok Polytechnic University Duhok, Kurdistan Region, Iraq
3 Center of Scientific Research and Development Nawroz University, Duhok, Kurdistan Region, Iraq
4 School of Computing, University Teknologi Malaysia, Johor, Malaysia

* Corresponding Author: Dilovan Asaad Zebari. Email: email

(This article belongs to the Special Issue: AI, IoT, Blockchain Assisted Intelligent Solutions to Medical and Healthcare Systems)

Computers, Materials & Continua 2021, 66(3), 3363-3382. https://doi.org/10.32604/cmc.2021.013314

Abstract

Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging. Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise, an enhanced technique is not achieved. The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern (LBP) and filtered noise reduction. To surmount the above limitations and achieve the aim of the study, a new descriptor that enhances the LBP features based on the new threshold has been proposed. This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer, which was attained in two stages. First, several images were generated from a single image using the pre-processing method. The median and Wiener filters were utilized to lessen the speckle noise and enhance the ultrasound image texture. This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes. Second, the fusion mechanism allowed the production of diverse features from different filtered images. The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated. The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images, respectively. The proposed method achieved very high accuracy (98%), sensitivity (98%), and specificity (99%). As a result, the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy, sensitivity, and specificity.

Keywords


Cite This Article

APA Style
Zeebaree, D.Q., Abdulazeez, A.M., Zebari, D.A., Haron, H., Hamed, H.N.A. (2021). Multi-level fusion in ultrasound for cancer detection based on uniform LBP features. Computers, Materials & Continua, 66(3), 3363-3382. https://doi.org/10.32604/cmc.2021.013314
Vancouver Style
Zeebaree DQ, Abdulazeez AM, Zebari DA, Haron H, Hamed HNA. Multi-level fusion in ultrasound for cancer detection based on uniform LBP features. Comput Mater Contin. 2021;66(3):3363-3382 https://doi.org/10.32604/cmc.2021.013314
IEEE Style
D.Q. Zeebaree, A.M. Abdulazeez, D.A. Zebari, H. Haron, and H.N.A. Hamed, “Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features,” Comput. Mater. Contin., vol. 66, no. 3, pp. 3363-3382, 2021. https://doi.org/10.32604/cmc.2021.013314

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3700

    View

  • 1559

    Download

  • 0

    Like

Share Link