Open Access iconOpen Access

ARTICLE

crossmark

A Comprehensive Utility Function for Resource Allocation in Mobile Edge Computing

Zaiwar Ali1, Sadia Khaf2, Ziaul Haq Abbas2, Ghulam Abbas3, Lei Jiao4, Amna Irshad2, Kyung Sup Kwak5, Muhammad Bilal6,*

1 Telecommunications and Networking (TeleCoN) Research Laboratory, GIK Institute of Engineering Sciences and Technology, Topi, 23640, Pakistan
2 Faculty of Electrical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640, Pakistan
3 Faculty of Computer Sciences and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640, Pakistan
4 Department of Information and Communication Technology, University of Agder (UiA), Grimstad, 4898, Norway
5 Department of Information and Communication Engineering, Inha University, Incheon, 22212, Korea
6 Department of Computer and Electronics Systems Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, 17035, Korea

* Corresponding Author: Muhammad Bilal. Email: email

(This article belongs to the Special Issue: Intelligent techniques for energy efficient service management in Edge computing)

Computers, Materials & Continua 2021, 66(2), 1461-1477. https://doi.org/10.32604/cmc.2020.013743

Abstract

In mobile edge computing (MEC), one of the important challenges is how much resources of which mobile edge server (MES) should be allocated to which user equipment (UE). The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only. This paper presents a novel comprehensive utility function for resource allocation in MEC. The utility function considers the heterogeneous nature of applications that a UE offloads to MES. The proposed utility function considers all important parameters, including CPU, RAM, hard disk space, required time, and distance, to calculate a more realistic utility value for MESs. Moreover, we improve upon some general algorithms, used for resource allocation in MEC and cloud computing, by considering our proposed utility function. We name the improved versions of these resource allocation schemes as comprehensive resource allocation schemes. The UE requests are modeled to represent the amount of resources requested by the UE as well as the time for which the UE has requested these resources. The utility function depends upon the UE requests and the distance between UEs and MES, and serves as a realistic means of comparison between different types of UE requests. Choosing (or selecting) an optimal MES with the optimal amount of resources to be allocated to each UE request is a challenging task. We show that MES resource allocation is sub-optimal if CPU is the only resource considered. By taking into account the other resources, i.e., RAM, disk space, request time, and distance in the utility function, we demonstrate improvement in the resource allocation algorithms in terms of service rate, utility, and MES energy consumption.

Keywords


Cite This Article

APA Style
Ali, Z., Khaf, S., Abbas, Z.H., Abbas, G., Jiao, L. et al. (2021). A comprehensive utility function for resource allocation in mobile edge computing. Computers, Materials & Continua, 66(2), 1461-1477. https://doi.org/10.32604/cmc.2020.013743
Vancouver Style
Ali Z, Khaf S, Abbas ZH, Abbas G, Jiao L, Irshad A, et al. A comprehensive utility function for resource allocation in mobile edge computing. Comput Mater Contin. 2021;66(2):1461-1477 https://doi.org/10.32604/cmc.2020.013743
IEEE Style
Z. Ali et al., “A Comprehensive Utility Function for Resource Allocation in Mobile Edge Computing,” Comput. Mater. Contin., vol. 66, no. 2, pp. 1461-1477, 2021. https://doi.org/10.32604/cmc.2020.013743

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3666

    View

  • 1765

    Download

  • 1

    Like

Share Link