Open Access
ARTICLE
Swarm-LSTM: Condition Monitoring of Gearbox Fault Diagnosis Based on Hybrid LSTM Deep Neural Network Optimized by Swarm Intelligence Algorithms
1 School of Electrical and Electronics, Sathyabama Institute of Science and Technology, Chennai, 600119, India
2 Department of Computer Science and Engineering, G.B. Pant Government Engineering College, New Delhi, 110020, India
3 Artificial Intelligence and Data Analytics (AIDA) Laboratory, CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia
4 Department of Computer Engineering, J.C. Bose University of Science and Technology, Faridabad, 121006, India
* Corresponding Author: Tanzila Saba. Email:
(This article belongs to the Special Issue: Deep Learning Trends in Intelligent Systems)
Computers, Materials & Continua 2021, 66(2), 2041-2059. https://doi.org/10.32604/cmc.2020.013131
Received 27 July 2020; Accepted 11 September 2020; Issue published 26 November 2020
Abstract
Nowadays, renewable energy has been emerging as the major source of energy and is driven by its aggressive expansion and falling costs. Most of the renewable energy sources involve turbines and their operation and maintenance are vital and a difficult task. Condition monitoring and fault diagnosis have seen remarkable and revolutionary up-gradation in approaches, practices and technology during the last decade. Turbines mostly do use a rotating type of machinery and analysis of those signals has been challenging to localize the defect. This paper proposes a new hybrid model wherein multiple swarm intelligence models have been evaluated to optimize the conventional Long Short-Term Memory (LSTM) model in classifying the faults from the vibration signals data acquired from the gearbox. This helps to analyze the performance and behavioral patterns of the system more effectively and efficiently which helps to suggest for replacement of the unit with higher precision. The results have demonstrated that the proposed hybrid modeling approach is effective in classifying the faults of the gearbox from the time series data and achieve higher diagnostic accuracy in comparison to the conventional LSTM methods.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.