Open Access iconOpen Access

ARTICLE

crossmark

Approach for Training Quantum Neural Network to Predict Severity of COVID-19 in Patients

Engy El-shafeiy1, Aboul Ella Hassanien2, Karam M. Sallam3,*, A. A. Abohany4

1 Department of Computer Science, Faculty of Computers and Artificial Intelligence, University of Sadat City, Sadat City, 32897, Egypt
2 Faculty of Computers and Artificial Intelligence, Cairo University, 12613, Egypt
3 Faculty of Computers and Information, Zagazig University, 44519, Egypt
4 Faculty of Computers and Information, Kafrelsheikh University, 33516, Egypt

* Corresponding Author: Karam M. Sallam. Email: email

(This article belongs to the Special Issue: Security and Computing in Internet of Things)

Computers, Materials & Continua 2021, 66(2), 1745-1755. https://doi.org/10.32604/cmc.2020.013066

Abstract

Currently, COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities. In this paper, a novel approach called the COVID-19 Quantum Neural Network (CQNN) for predicting the severity of COVID-19 in patients is proposed. It consists of two phases: In the first, the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection (QRFS) method to improve its classification performance; and, in the second, machine learning is used to train the quantum neural network to classify the risk. It is found that patients’ serial blood counts (their numbers of lymphocytes from days 1 to 15 after admission to hospital) are associated with relapse rates and evaluations of COVID-19 infections. Accordingly, the severity of COVID-19 is classified in two categories, serious and non-serious. The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.

Keywords


Cite This Article

APA Style
El-shafeiy, E., Hassanien, A.E., Sallam, K.M., Abohany, A.A. (2021). Approach for training quantum neural network to predict severity of COVID-19 in patients. Computers, Materials & Continua, 66(2), 1745-1755. https://doi.org/10.32604/cmc.2020.013066
Vancouver Style
El-shafeiy E, Hassanien AE, Sallam KM, Abohany AA. Approach for training quantum neural network to predict severity of COVID-19 in patients. Comput Mater Contin. 2021;66(2):1745-1755 https://doi.org/10.32604/cmc.2020.013066
IEEE Style
E. El-shafeiy, A.E. Hassanien, K.M. Sallam, and A.A. Abohany, “Approach for Training Quantum Neural Network to Predict Severity of COVID-19 in Patients,” Comput. Mater. Contin., vol. 66, no. 2, pp. 1745-1755, 2021. https://doi.org/10.32604/cmc.2020.013066

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 4084

    View

  • 2363

    Download

  • 0

    Like

Share Link