Home / Journals / CMC / Vol.66, No.2, 2021
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Understanding the Language of ISIS: An Empirical Approach to Detect Radical Content on Twitter Using Machine Learning

    Zia Ul Rehman1,2, Sagheer Abbas1, Muhammad Adnan Khan3,*, Ghulam Mustafa2, Hira Fayyaz4, Muhammad Hanif1,2, Muhammad Anwar Saeed5
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1075-1090, 2021, DOI:10.32604/cmc.2020.012770 - 26 November 2020
    Abstract The internet, particularly online social networking platforms have revolutionized the way extremist groups are influencing and radicalizing individuals. Recent research reveals that the process initiates by exposing vast audiences to extremist content and then migrating potential victims to confined platforms for intensive radicalization. Consequently, social networks have evolved as a persuasive tool for extremism aiding as recruitment platform and psychological warfare. Thus, recognizing potential radical text or material is vital to restrict the circulation of the extremist chronicle. The aim of this research work is to identify radical text in social media. Our contributions are… More >

  • Open AccessOpen Access

    ARTICLE

    A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network

    Kyungsuk Jang1, Gun Jin Yun2,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1091-1120, 2021, DOI:10.32604/cmc.2020.012911 - 26 November 2020
    Abstract This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests. Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation. The proposed method can overcome such practical challenges. The methodology is formalized by combining four ideas: 1) The deep learning neural network (DLNN)-based material constitutive model, 2) Self-learning inverse finite element (SELIFE) simulation, 3) Algorithmic identification of failure points from the self-learned stress-strain curves and 4) Derivation of the failure criteria through symbolic regression More >

  • Open AccessOpen Access

    ARTICLE

    An Effective Numerical Method for the Solution of a Stochastic Coronavirus (2019-nCovid) Pandemic Model

    Wasfi Shatanawi1,2,3, Ali Raza4,5,*, Muhammad Shoaib Arif4, Kamaledin Abodayeh1, Muhammad Rafiq6, Mairaj Bibi7
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1121-1137, 2021, DOI:10.32604/cmc.2020.012070 - 26 November 2020
    (This article belongs to the Special Issue: Mathematical aspects of the Coronavirus Disease 2019 (COVID-19): Analysis and Control)
    Abstract Nonlinear stochastic modeling plays a significant role in disciplines such as psychology, finance, physical sciences, engineering, econometrics, and biological sciences. Dynamical consistency, positivity, and boundedness are fundamental properties of stochastic modeling. A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation. Well-known explicit methods such as Euler Maruyama, stochastic Euler, and stochastic Runge–Kutta are investigated for the stochastic model. Regrettably, the above essential properties are not restored by existing methods. Hence, there is a need to construct essential properties preserving the computational method. The non-standard approach of finite difference is examined More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Approach to Data Encryption Based on Matrix Computations

    Rosilah Hassan1, Selver Pepic2, Muzafer Saracevic3, Khaleel Ahmad4,*, Milan Tasic5
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1139-1153, 2021, DOI:10.32604/cmc.2020.013104 - 26 November 2020
    (This article belongs to the Special Issue: Deep Learning Trends in Intelligent Systems)
    Abstract In this paper, we provide a new approach to data encryption using generalized inverses. Encryption is based on the implementation of weighted Moore–Penrose inverse AMN(nxm) over the nx8 constant matrix. The square Hermitian positive definite matrix N8x8 p is the key. The proposed solution represents a very strong key since the number of different variants of positive definite matrices of order 8 is huge. We have provided NIST (National Institute of Standards and Technology) quality assurance tests for a random generated Hermitian matrix (a total of 10 different tests and additional analysis with approximate entropy and random… More >

  • Open AccessOpen Access

    ARTICLE

    Fuzzy Based Decision Making Approach for Evaluating the Severity of COVID-19 Pandemic in Cities of Kingdom of Saudi Arabia

    Abdullah Baz1,*, Hosam Alhakami2
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1155-1174, 2021, DOI:10.32604/cmc.2020.013215 - 26 November 2020
    Abstract The World Health Organization declared COVID-19 a pandemic on March 11, 2020 stating that it is a worldwide danger and requires imminent preventive strategies to minimise the loss of lives. COVID-19 has now affected millions across 211 countries in the world and the numbers continue to rise. The information discharged by the WHO till June 15, 2020 reports 8,063,990 cases of COVID-19. As the world thinks about the lethal malady for which there is yet no immunization or a predefined course of drug, the nations are relentlessly working at the most ideal preventive systems to… More >

  • Open AccessOpen Access

    ARTICLE

    Industry 4.0: Architecture and Equipment Revolution

    Ahmed Bashar Fakhri1, Saleem Latteef Mohammed1, Imran Khan2, Ali Safaa Sadiq3,4, Basem Alkazemi5, Prashant Pillai4, Bong Jun Choi6,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1175-1194, 2021, DOI:10.32604/cmc.2020.012587 - 26 November 2020
    Abstract The development of science and technology has led to the era of Industry 4.0. The core concept is the combination of “material and informationization”. In the supply chain and manufacturing process, the “material” of the physical entity world is realized by data, identity, intelligence, and information. Industry 4.0 is a disruptive transformation and upgrade of intelligent industrialization based on the Internet-of-Things and Big Data in traditional industrialization. The goal is “maximizing production efficiency, minimizing production costs, and maximizing the individual needs of human beings for products and services.” Achieving this goal will surely bring about More >

  • Open AccessOpen Access

    ARTICLE

    Exploiting Structural Similarities to Classify Citations

    Muhammad Saboor Ahmed*, Muhammad Tanvir Afzal
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1195-1214, 2021, DOI:10.32604/cmc.2020.012619 - 26 November 2020
    Abstract Citations play an important role in the scientific community by assisting in measuring multifarious policies like the impact of journals, researchers, institutions, and countries. Authors cite papers for different reasons, such as extending previous work, comparing their study with the state-of-the-art, providing background of the field, etc. In recent years, researchers have tried to conceptualize all citations into two broad categories, important and incidental. Such a categorization is very important to enhance scientific output in multiple ways, for instance, (1) Helping a researcher in identifying meaningful citations from a list of 100 to 1000 citations… More >

  • Open AccessOpen Access

    ARTICLE

    University Learning and Anti-Plagiarism Back-End Services

    Manjur Kolhar*, Abdalla Alameen
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1215-1226, 2021, DOI:10.32604/cmc.2020.012658 - 26 November 2020
    Abstract Plagiarism refers to the use of other people’s ideas and information without acknowledging the source. In this research, anti-plagiarism software was designed especially for the university and its campuses to identify plagiarized text in students’ written assignments and laboratory reports. The proposed framework collected original documents to identify plagiarized text using natural language processing. Our research proposes a method to detect plagiarism by applying the core concept of text, which is semantic associations of words and their syntactic composition. Information on the browser was obtained through Request application programming interface by name Url.AbsoluteUri, and it is… More >

  • Open AccessOpen Access

    ARTICLE

    Entanglement and Sudden Death for a Two-Mode Radiation Field Two Atoms

    Eman M. A. Hilal1, E. M. Khalil2,3,*, S. Abdel-Khalek2,4
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1227-1236, 2021, DOI:10.32604/cmc.2020.012659 - 26 November 2020
    Abstract The effect of the field–field interaction on a cavity containing two qubit (TQ) interacting with a two mode of electromagnetic field as parametric amplifier type is investigated. After performing an appropriate transformation, the constants of motion are calculated. Using the Schrödinger differential equation a system of differential equations was obtained, and the general solution was obtained in the case of exact resonance. Some statistical quantities were calculated and discussed in detail to describe the features of this system. The collapses and revivals phenomena have been discussed in details. The Shannon information entropy has been applied… More >

  • Open AccessOpen Access

    ARTICLE

    Smart CardioWatch System for Patients with Cardiovascular Diseases Who Live Alone

    Raisa Nazir Ahmed Kazi1,*, Manjur Kolhar2, Faiza Rizwan2
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1237-1250, 2021, DOI:10.32604/cmc.2020.012707 - 26 November 2020
    Abstract The widespread use of smartwatches has increased their specific and complementary activities in the health sector for patient’s prognosis. In this study, we propose a framework referred to as smart forecasting CardioWatch (SCW) to measure the heart-rate variation (HRV) for patients with myocardial infarction (MI) who live alone or are outside their homes. In this study, HRV is used as a vital alarming sign for patients with MI. The performance of the proposed framework is measured using machine learning and deep learning techniques, namely, support vector machine, logistic regression, and decision-tree classification techniques. The results More >

  • Open AccessOpen Access

    ARTICLE

    Efficient Flexible M-Tree Bulk Loading Using FastMap and Space-Filling Curves

    Woong-Kee Loh*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1251-1267, 2021, DOI:10.32604/cmc.2020.012763 - 26 November 2020
    Abstract Many database applications currently deal with objects in a metric space. Examples of such objects include unstructured multimedia objects and points of interest (POIs) in a road network. The M-tree is a dynamic index structure that facilitates an efficient search for objects in a metric space. Studies have been conducted on the bulk loading of large datasets in an M-tree. However, because previous algorithms involve excessive distance computations and disk accesses, they perform poorly in terms of their index construction and search capability. This study proposes two efficient M-tree bulk loading algorithms. Our algorithms minimize More >

  • Open AccessOpen Access

    ARTICLE

    Marker-Based and Marker-Less Motion Capturing Video Data: Person and Activity Identification Comparison Based on Machine Learning Approaches

    Syeda Binish Zahra1,2, Muhammad Adnan Khan2,*, Sagheer Abbas1, Khalid Masood Khan2, Mohammed A. Al-Ghamdi3, Sultan H. Almotiri3
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1269-1282, 2021, DOI:10.32604/cmc.2020.012778 - 26 November 2020
    Abstract Biomechanics is the study of physiological properties of data and the measurement of human behavior. In normal conditions, behavioural properties in stable form are created using various inputs of subconscious/conscious human activities such as speech style, body movements in walking patterns, writing style and voice tunes. One cannot perform any change in these inputs that make results reliable and increase the accuracy. The aim of our study is to perform a comparative analysis between the marker-based motion capturing system (MBMCS) and the marker-less motion capturing system (MLMCS) using the lower body joint angles of human… More >

  • Open AccessOpen Access

    ARTICLE

    Survey and Analysis of VoIP Frame Aggregation Methods over A-MSDU IEEE 802.11n Wireless Networks

    Mosleh M. Abualhaj1,*, Abdelrahman H. Hussein1, Manjur Kolhar2, Mwaffaq Abu AlHija1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1283-1300, 2021, DOI:10.32604/cmc.2020.012991 - 26 November 2020
    Abstract The IEEE 802.11n standard has provided prominent features that greatly contribute to ubiquitous wireless networks. Over the last ten years, voice over IP (VoIP) has become widespread around the globe owing to its low-cost or even free call rate. The combination of these technologies (VoIP and wireless) has become desirable and inevitable for organizations. However, VoIP faces a bandwidth utilization issue when working with 802.11 wireless networks. The bandwidth utilization is inefficient on the grounds that (i) 80 bytes of 802.11/RTP/UDP/IP header is appended to 10–730 bytes of VoIP payload and (ii) 765 µs waiting… More >

  • Open AccessOpen Access

    ARTICLE

    Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks

    Ruaa A. Al-Falluji1,*, Zainab Dalaf Katheeth2, Bashar Alathari2
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1301-1313, 2021, DOI:10.32604/cmc.2020.013232 - 26 November 2020
    (This article belongs to the Special Issue: AI, IoT, Blockchain Assisted Intelligent Solutions to Medical and Healthcare Systems)
    Abstract The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition… More >

  • Open AccessOpen Access

    ARTICLE

    A Deep-CNN Crowd Counting Model for Enforcing Social Distancing during COVID19 Pandemic: Application to Saudi Arabia’s Public Places

    Salma Kammoun Jarraya1,2,*, Maha Hamdan Alotibi1,3, Manar Salamah Ali1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1315-1328, 2021, DOI:10.32604/cmc.2020.013522 - 26 November 2020
    Abstract With the emergence of the COVID19 virus in late 2019 and the declaration that the virus is a worldwide pandemic, health organizations and governments have begun to implement severe health precautions to reduce the spread of the virus and preserve human lives. The enforcement of social distancing at work environments and public areas is one of these obligatory precautions. Crowd management is one of the effective measures for social distancing. By reducing the social contacts of individuals, the spread of the disease will be immensely reduced. In this paper, a model for crowd counting in… More >

  • Open AccessOpen Access

    ARTICLE

    IWD-Miner: A Novel Metaheuristic Algorithm for Medical Data Classification

    Sarab AlMuhaideb*, Reem BinGhannam, Nourah Alhelal, Shatha Alduheshi, Fatimah Alkhamees, Raghad Alsuhaibani
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1329-1346, 2021, DOI:10.32604/cmc.2020.013576 - 26 November 2020
    (This article belongs to the Special Issue: AI, IoT, Blockchain Assisted Intelligent Solutions to Medical and Healthcare Systems)
    Abstract Medical data classification (MDC) refers to the application of classification methods on medical datasets. This work focuses on applying a classification task to medical datasets related to specific diseases in order to predict the associated diagnosis or prognosis. To gain experts’ trust, the prediction and the reasoning behind it are equally important. Accordingly, we confine our research to learn rule-based models because they are transparent and comprehensible. One approach to MDC involves the use of metaheuristic (MH) algorithms. Here we report on the development and testing of a novel MH algorithm: IWD-Miner. This algorithm can… More >

  • Open AccessOpen Access

    ARTICLE

    Urdu Ligature Recognition System: An Evolutionary Approach

    Naila Habib Khan1,*, Awais Adnan1, Abdul Waheed2,3, Mahdi Zareei4, Abdallah Aldosary5, Ehab Mahmoud Mohamed6,7
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1347-1367, 2021, DOI:10.32604/cmc.2020.013715 - 26 November 2020
    Abstract Cursive text recognition of Arabic script-based languages like Urdu is extremely complicated due to its diverse and complex characteristics. Evolutionary approaches like genetic algorithms have been used in the past for various optimization as well as pattern recognition tasks, reporting exceptional results. The proposed Urdu ligature recognition system uses a genetic algorithm for optimization and recognition. Overall the proposed recognition system observes the processes of pre-processing, segmentation, feature extraction, hierarchical clustering, classification rules and genetic algorithm optimization and recognition. The pre-processing stage removes noise from the sentence images, whereas, in segmentation, the sentences are segmented More >

  • Open AccessOpen Access

    ARTICLE

    Application of Modified Extended Tanh Technique for Solving Complex Ginzburg–Landau Equation Considering Kerr Law Nonlinearity

    Yuming Chu1,2, Muhannad A. Shallal3, Seyed Mehdi Mirhosseini-Alizamini4, Hadi Rezazadeh5, Shumaila Javeed6,*, Dumitru Baleanu7,8
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1369-1378, 2021, DOI:10.32604/cmc.2020.012611 - 26 November 2020
    Abstract The purpose of this work is to find new soliton solutions of the complex Ginzburg–Landau equation (GLE) with Kerr law non-linearity. The considered equation is an imperative nonlinear partial differential equation (PDE) in the field of physics. The applications of complex GLE can be found in optics, plasma and other related fields. The modified extended tanh technique with Riccati equation is applied to solve the Complex GLE. The results are presented under a suitable choice for the values of parameters. Figures are shown using the three and two-dimensional plots to represent the shape of the… More >

  • Open AccessOpen Access

    ARTICLE

    A Crowdsourcing Recommendation that Considers the Influence of Workers

    Zhifang Liao1, Xin Xu1, Peng Lan1, Liu Yang1, Yan Zhang2, Xiaoping Fan3,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1379-1396, 2021, DOI:10.32604/cmc.2020.011995 - 26 November 2020
    Abstract In the context of the continuous development of the Internet, crowdsourcing has received continuous attention as a new cooperation model based on the relationship between enterprises, the public and society. Among them, a reasonably designed recommendation algorithm can recommend a batch of suitable workers for crowdsourcing tasks to improve the final task completion quality. Therefore, this paper proposes a crowdsourcing recommendation framework based on workers’ influence (CRBI). This crowdsourcing framework completes the entire process design from task distribution, worker recommendation, and result return through processes such as worker behavior analysis, task characteristics construction, and cost… More >

  • Open AccessOpen Access

    ARTICLE

    How Can Lean Manufacturing Lead the Manufacturing Sector during Health Pandemics Such as COVID 19: A Multi Response Optimization Framework

    Abdallah Ali Abdallah*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1397-1410, 2021, DOI:10.32604/cmc.2020.013733 - 26 November 2020
    Abstract Lean manufacturing has been used for the last few decades as a process and performance improvement tool. Initially known as Toyota production system (TPS), lean is now used in almost all service and manufacturing sectors to deliver favorable results such as decreased operational cost, increased customer satisfaction, decreased cycle time, and enhanced profits. During the coronavirus disease (COVID 19) pandemic, the manufacturing sector struggled immensely and could not function well even after lockdown was eased in many countries. Many companies found out there are not ready to conform with new regulations made by authorities in… More >

  • Open AccessOpen Access

    ARTICLE

    Evaluation of Pencil Lead Based Electrodes for Electrocardiogram Monitoring in Hot Spring

    Ratha Yeu1, Namhui Ra2, Seong-A Lee3, Yunyoung Nam4,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1411-1425, 2021, DOI:10.32604/cmc.2020.013761 - 26 November 2020
    (This article belongs to the Special Issue: Artificial Intelligence and IoT based intelligent systems using high performance computing for Medical applications.)
    Abstract Electrocardiogram (ECG) electrodes are conductive pads applied to the skin to measure cardiac activity. Ag/AgCl electrodes are the commercial product which widely used to obtain ECGs. When monitoring the ECG in a hot spring, Ag/AgCl electrodes must be waterproofed; however, this is time-consuming, and the adhesive may tear the skin on removal. For solving the problem, we developed the carbon pencil lead (CPL) electrodes for use in hot springs. Both CPL and Ag/AgCl electrodes were connected to ECG100C’s cables. The Performance was evaluated in three conditions as following: hot spring water with and without bubble,… More >

  • Open AccessOpen Access

    ARTICLE

    An Iterative Scheme of Arbitrary Odd Order and Its Basins of Attraction for Nonlinear Systems

    Obadah Said Solaiman, Ishak Hashim*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1427-1444, 2021, DOI:10.32604/cmc.2020.012610 - 26 November 2020
    Abstract In this paper, we propose a fifth-order scheme for solving systems of nonlinear equations. The convergence analysis of the proposed technique is discussed. The proposed method is generalized and extended to be of any odd order of the form 2n − 1. The scheme is composed of three steps, of which the first two steps are based on the two-step Homeier’s method with cubic convergence, and the last is a Newton step with an appropriate approximation for the derivative. Every iteration of the presented method requires the evaluation of two functions, two Fréchet derivatives, and… More >

  • Open AccessOpen Access

    ARTICLE

    An Unsteady Oscillatory Flow of Generalized Casson Fluid with Heat and Mass Transfer: A Comparative Fractional Model

    Anis ur Rehman1, Farhad Ali1, Aamina Aamina2,3,*, Anees Imitaz1, Ilyas Khan4, Kottakkaran Sooppy Nisar5
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1445-1459, 2021, DOI:10.32604/cmc.2020.012457 - 26 November 2020
    Abstract It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications. Because of its wide range of applications, this study aims at evaluating the solutions corresponding to Casson fluids’ oscillating flow using fractional-derivatives. As it has a combined mass-heat transfer effect, we considered the fluid flow upon an oscillatory infinite vertical-plate. Furthermore, we used two new fractional approaches of fractional derivatives, named AB (Atangana–Baleanu) and CF (Caputo–Fabrizio), More >

  • Open AccessOpen Access

    ARTICLE

    A Comprehensive Utility Function for Resource Allocation in Mobile Edge Computing

    Zaiwar Ali1, Sadia Khaf2, Ziaul Haq Abbas2, Ghulam Abbas3, Lei Jiao4, Amna Irshad2, Kyung Sup Kwak5, Muhammad Bilal6,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1461-1477, 2021, DOI:10.32604/cmc.2020.013743 - 26 November 2020
    (This article belongs to the Special Issue: Intelligent techniques for energy efficient service management in Edge computing)
    Abstract In mobile edge computing (MEC), one of the important challenges is how much resources of which mobile edge server (MES) should be allocated to which user equipment (UE). The existing resource allocation schemes only consider CPU as the requested resource and assume utility for MESs as either a random variable or dependent on the requested CPU only. This paper presents a novel comprehensive utility function for resource allocation in MEC. The utility function considers the heterogeneous nature of applications that a UE offloads to MES. The proposed utility function considers all important parameters, including CPU,… More >

  • Open AccessOpen Access

    ARTICLE

    Fused and Modified Evolutionary Optimization of Multiple Intelligent Systems Using ANN, SVM Approaches

    Jalal Sadoon Hameed Al-bayati1,*, Burak Berk Üstündağ2
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1479-1496, 2021, DOI:10.32604/cmc.2020.013329 - 26 November 2020
    Abstract The Fused Modified Grasshopper Optimization Algorithm has been proposed, which selects the most specific feature sets from images of the disease of plant leaves. The Proposed algorithm ensures the detection of diseases during the early stages of the diagnosis of leaf disease by farmers and, finally, the crop needed to be controlled by farmers to ensure the survival and protection of plants. In this study, a novel approach has been suggested based on the standard optimization algorithm for grasshopper and the selection of features. Leaf conditions in plants are a major factor in reducing crop… More >

  • Open AccessOpen Access

    ARTICLE

    ECO-BAT: A New Routing Protocol for Energy Consumption Optimization Based on BAT Algorithm in WSN

    Mohammed Kaddi1,*, Abdallah Banana2, Mohammed Omari1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1497-1510, 2021, DOI:10.32604/cmc.2020.012116 - 26 November 2020
    Abstract Wireless sensor network (WSN) has been widely used due to its vast range of applications. The energy problem is one of the important problems influencing the complete application. Sensor nodes use very small batteries as a power source and replacing them is not an easy task. With this restriction, the sensor nodes must conserve their energy and extend the network lifetime as long as possible. Also, these limits motivate much of the research to suggest solutions in all layers of the protocol stack to save energy. So, energy management efficiency becomes a key requirement in… More >

  • Open AccessOpen Access

    ARTICLE

    Prospect Theory Based Hesitant Fuzzy Multi-Criteria Decision Making for Low Sulphur Fuel of Maritime Transportation

    Changli Lu1, Ming Zhao1,2, Imran Khan3, Peerapong Uthansakul4,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1511-1528, 2021, DOI:10.32604/cmc.2020.012556 - 26 November 2020
    Abstract The environmental impact of maritime transport has now become a relevant issue in sustainable policy formulation and has attracted increasing interest from academia. For the sustainable development of maritime transport, International Maritime Organization stipulates that the sulfur content of ship emissions will reach 0.5 from 2020. With the approaching of the stipulated implementation date, shipowners need to adopt scientific methods to make decision on low sulfur fuel. In this study, we applied a prospect theory based hesitant fuzzy multi-criteria decision-making model to obtain the optimal decision of low Sulphur marine fuel. For this purpose, the… More >

  • Open AccessOpen Access

    ARTICLE

    Three-Dimensional Distance-Error-Correction-Based Hop Localization Algorithm for IoT Devices

    Deepak Prashar1, Gyanendra Prasad Joshi2, Sudan Jha1, Eunmok Yang3, Kwang Chul Son4,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1529-1549, 2021, DOI:10.32604/cmc.2020.012986 - 26 November 2020
    Abstract The Internet of Things (IoT) is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems. These networks of wireless sensors monitor the physical environment and report the collected data to the base station, allowing for smarter decisions. Localization in wireless sensor networks is to localize a sensor node in a two-dimensional plane. However, in some application areas, such as various surveillances, underwater monitoring systems, and various environmental monitoring applications, wireless sensors are deployed in a three-dimensional plane. Recently, localization-based applications have emerged as one… More >

  • Open AccessOpen Access

    ARTICLE

    A New Mixed Clustering-Based Method to Analyze the Gait of Children with Cerebral Palsy

    Jing Hu1, Ling Zhang1, Jie Li2,3,*, Qirun Wang4
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1551-1562, 2021, DOI:10.32604/cmc.2020.011829 - 26 November 2020
    Abstract Cerebral palsy is a group of persistent central movement and postural developmental disorders, and restricted activity syndromes. This syndrome is caused by non-progressive brain damage to the developing fetus or infants. Cerebral palsy assessment can determine whether the brain is behind or abnormal. If it exists, early intervention and rehabilitation can be carried out as soon as possible to restore brain function to the greatest extent. The direct external manifestation of cerebral palsy is abnormal gait. Accurately determining the muscle strength-related reasons that cause this abnormal gait is the primary problem for treatment. In this… More >

  • Open AccessOpen Access

    ARTICLE

    Al2O3 and γAl2O3 Nanomaterials Based Nanofluid Models with Surface Diffusion: Applications for Thermal Performance in Multiple Engineering Systems and Industries

    Adnan1, Umar Khan2, Naveed Ahmed3, Syed Tauseef Mohyud-Din4, Ilyas Khan5,*, Dumitru Baleanu6,7,8, Kottakkaran Sooppy Nisar9
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1563-1576, 2021, DOI:10.32604/cmc.2020.012326 - 26 November 2020
    Abstract Thermal transport investigation in colloidal suspensions is taking a significant research direction. The applications of these fluids are found in various industries, engineering, aerodynamics, mechanical engineering and medical sciences etc. A huge amount of thermal transport is essential in the operation of various industrial production processes. It is a fact that conventional liquids have lower thermal transport characteristics as compared to colloidal suspensions. The colloidal suspensions have high thermal performance due to the thermophysical attributes of the nanoparticles and the host liquid. Therefore, researchers focused on the analysis of the heat transport in nanofluids under… More >

  • Open AccessOpen Access

    ARTICLE

    Memetic Optimization with Cryptographic Encryption for Secure Medical Data Transmission in IoT-Based Distributed Systems

    Srinath Doss1, Jothi Paranthaman2, Suseendran Gopalakrishnan3, Akila Duraisamy3, Souvik Pal4, Balaganesh Duraisamy5, Chung Le Van6,*, Dac-Nhuong Le7
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1577-1594, 2021, DOI:10.32604/cmc.2020.012379 - 26 November 2020
    Abstract In the healthcare system, the Internet of Things (IoT) based distributed systems play a vital role in transferring the medical-related documents and information among the organizations to reduce the replication in medical tests. This datum is sensitive, and hence security is a must in transforming the sensational contents. In this paper, an Evolutionary Algorithm, namely the Memetic Algorithm is used for encrypting the text messages. The encrypted information is then inserted into the medical images using Discrete Wavelet Transform 1 level and 2 levels. The reverse method of the Memetic Algorithm is implemented when extracting More >

  • Open AccessOpen Access

    ARTICLE

    Autonomous Parking-Lots Detection with Multi-Sensor Data Fusion Using Machine Deep Learning Techniques

    Kashif Iqbal1,2, Sagheer Abbas1, Muhammad Adnan Khan3,*, Atifa Athar4, Muhammad Saleem Khan1, Areej Fatima3, Gulzar Ahmad1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1595-1612, 2021, DOI:10.32604/cmc.2020.013231 - 26 November 2020
    Abstract The rapid development and progress in deep machine-learning techniques have become a key factor in solving the future challenges of humanity. Vision-based target detection and object classification have been improved due to the development of deep learning algorithms. Data fusion in autonomous driving is a fact and a prerequisite task of data preprocessing from multi-sensors that provide a precise, well-engineered, and complete detection of objects, scene or events. The target of the current study is to develop an in-vehicle information system to prevent or at least mitigate traffic issues related to parking detection and traffic… More >

  • Open AccessOpen Access

    ARTICLE

    Intelligent Prediction Approach for Diabetic Retinopathy Using Deep Learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs

    G. Arun Sampaul Thomas1, Y. Harold Robinson2, E. Golden Julie3, Vimal Shanmuganathan4, Seungmin Rho5, Yunyoung Nam6,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1613-1629, 2021, DOI:10.32604/cmc.2020.013443 - 26 November 2020
    (This article belongs to the Special Issue: Deep Learning Trends in Intelligent Systems)
    Abstract Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed, leak fluid and vision impairment. Symptoms of retinopathy are blurred vision, changes in color perception, red spots, and eye pain and it cannot be detected with a naked eye. In this paper, a new methodology based on Convolutional Neural Networks (CNN) is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses. The CNN model is trained by different images of eyes that have More >

  • Open AccessOpen Access

    ARTICLE

    Early Detection of Diabetic Retinopathy Using Machine Intelligence through Deep Transfer and Representational Learning

    Fouzia Nawaz1, Muhammad Ramzan1, Khalid Mehmood1, Hikmat Ullah Khan2, Saleem Hayat Khan3,4, Muhammad Raheel Bhutta5,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1631-1645, 2021, DOI:10.32604/cmc.2020.012887 - 26 November 2020
    (This article belongs to the Special Issue: Artificial Intelligence and IoT based intelligent systems using high performance computing for Medical applications.)
    Abstract Diabetic retinopathy (DR) is a retinal disease that causes irreversible blindness. DR occurs due to the high blood sugar level of the patient, and it is clumsy to be detected at an early stage as no early symptoms appear at the initial level. To prevent blindness, early detection and regular treatment are needed. Automated detection based on machine intelligence may assist the ophthalmologist in examining the patients’ condition more accurately and efficiently. The purpose of this study is to produce an automated screening system for recognition and grading of diabetic retinopathy using machine learning through More >

  • Open AccessOpen Access

    ARTICLE

    Improving the Detection Rate of Rarely Appearing Intrusions in Network-Based Intrusion Detection Systems

    Eunmok Yang1, Gyanendra Prasad Joshi2, Changho Seo3,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1647-1663, 2021, DOI:10.32604/cmc.2020.013210 - 26 November 2020
    Abstract In network-based intrusion detection practices, there are more regular instances than intrusion instances. Because there is always a statistical imbalance in the instances, it is difficult to train the intrusion detection system effectively. In this work, we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances. Our technique mitigates the statistical imbalance in these instances. We also carried out an experiment on the training model by increasing the instances, thereby increasing the attack instances step by step up to 13 levels. The experiments included not… More >

  • Open AccessOpen Access

    ARTICLE

    An IoT-Cloud Based Intelligent Computer-Aided Diagnosis of Diabetic Retinopathy Stage Classification Using Deep Learning Approach

    K. Shankar1,*, Eswaran Perumal1, Mohamed Elhoseny2, Phong Thanh Nguyen3
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1665-1680, 2021, DOI:10.32604/cmc.2020.013251 - 26 November 2020
    (This article belongs to the Special Issue: Artificial Intelligence and IoT based intelligent systems using high performance computing for Medical applications.)
    Abstract Diabetic retinopathy (DR) is a disease with an increasing prevalence and the major reason for blindness among working-age population. The possibility of severe vision loss can be extensively reduced by timely diagnosis and treatment. An automated screening for DR has been identified as an effective method for early DR detection, which can decrease the workload associated to manual grading as well as save diagnosis costs and time. Several studies have been carried out to develop automated detection and classification models for DR. This paper presents a new IoT and cloud-based deep learning for healthcare diagnosis… More >

  • Open AccessOpen Access

    ARTICLE

    Click through Rate Effectiveness Prediction on Mobile Ads Using Extreme Gradient Boosting

    AlAli Moneera, AlQahtani Maram, AlJuried Azizah, Taghareed AlOnizan, Dalia Alboqaytah, Nida Aslam*, Irfan Ullah Khan
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1681-1696, 2021, DOI:10.32604/cmc.2020.013466 - 26 November 2020
    Abstract Online advertisements have a significant influence over the success or failure of your business. Therefore, it is important to somehow measure the impact of your advertisement before uploading it online, and this is can be done by calculating the Click Through Rate (CTR). Unfortunately, this method is not eco-friendly, since you have to gather the clicks from users then compute the CTR. This is where CTR prediction come in handy. Advertisement CTR prediction relies on the users’ log regarding click information data. Accurate prediction of CTR is a challenging and critical process for e-advertising platforms… More >

  • Open AccessOpen Access

    ARTICLE

    SMConf: One-Size-Fit-Bunch, Automated Memory Capacity Configuration for In-Memory Data Analytic Platform

    Yi Liang1,*, Shaokang Zeng1, Xiaoxian Xu2, Shilu Chang1, Xing Su1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1697-1717, 2021, DOI:10.32604/cmc.2020.012513 - 26 November 2020
    Abstract Spark is the most popular in-memory processing framework for big data analytics. Memory is the crucial resource for workloads to achieve performance acceleration on Spark. The extant memory capacity configuration approach in Spark is to statically configure the memory capacity for workloads based on user’s specifications. However, without the deep knowledge of the workload’s system-level characteristics, users in practice often conservatively overestimate the memory utilizations of their workloads and require resource manager to grant more memory share than that they actually need, which leads to the severe waste of memory resources. To address the above… More >

  • Open AccessOpen Access

    ARTICLE

    Intelligent Decision Support System for COVID-19 Empowered with Deep Learning

    Shahan Yamin Siddiqui1,2, Sagheer Abbas1, Muhammad Adnan Khan3,*, Iftikhar Naseer4, Tehreem Masood4, Khalid Masood Khan3, Mohammed A. Al Ghamdi5, Sultan H. Almotiri5
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1719-1732, 2021, DOI:10.32604/cmc.2020.012585 - 26 November 2020
    (This article belongs to the Special Issue: Machine Learning and Computational Methods for COVID-19 Disease Detection and Prediction)
    Abstract The prompt spread of Coronavirus (COVID-19) subsequently adorns a big threat to the people around the globe. The evolving and the perpetually diagnosis of coronavirus has become a critical challenge for the healthcare sector. Drastically increase of COVID-19 has rendered the necessity to detect the people who are more likely to get infected. Lately, the testing kits for COVID-19 are not available to deal it with required proficiency, along with-it countries have been widely hit by the COVID-19 disruption. To keep in view the need of hour asks for an automatic diagnosis system for early… More >

  • Open AccessOpen Access

    ARTICLE

    Efficient Routing Protection Algorithm in Large-Scale Networks

    Haijun Geng1,2,*, Han Zhang3, Yangyang Zhang4
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1733-1744, 2021, DOI:10.32604/cmc.2020.013355 - 26 November 2020
    Abstract With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks, minimizing network disruption caused by network failure has become critical. However, a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently. The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures. During the reconvergence process, the packets may be lost because of inconsistent routing information, which reduces the network’s availability greatly and affects the Internet service provider’s (ISP’s) service quality and reputation seriously. Therefore, improving network availability… More >

  • Open AccessOpen Access

    ARTICLE

    Approach for Training Quantum Neural Network to Predict Severity of COVID-19 in Patients

    Engy El-shafeiy1, Aboul Ella Hassanien2, Karam M. Sallam3,*, A. A. Abohany4
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1745-1755, 2021, DOI:10.32604/cmc.2020.013066 - 26 November 2020
    (This article belongs to the Special Issue: Security and Computing in Internet of Things)
    Abstract Currently, COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities. In this paper, a novel approach called the COVID-19 Quantum Neural Network (CQNN) for predicting the severity of COVID-19 in patients is proposed. It consists of two phases: In the first, the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection (QRFS) method to improve its classification performance; and, in the second, machine learning is used to train the quantum neural network to classify the risk. It is found that patients’ serial More >

  • Open AccessOpen Access

    ARTICLE

    3D Head Pose Estimation through Facial Features and Deep Convolutional Neural Networks

    Khalil Khan1, Jehad Ali2, Kashif Ahmad3, Asma Gul4, Ghulam Sarwar5, Sahib Khan6, Qui Thanh Hoai Ta7, Tae-Sun Chung8, Muhammad Attique9,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1757-1770, 2021, DOI:10.32604/cmc.2020.013590 - 26 November 2020
    Abstract Face image analysis is one among several important cues in computer vision. Over the last five decades, methods for face analysis have received immense attention due to large scale applications in various face analysis tasks. Face parsing strongly benefits various human face image analysis tasks inducing face pose estimation. In this paper we propose a 3D head pose estimation framework developed through a prior end to end deep face parsing model. We have developed an end to end face parts segmentation framework through deep convolutional neural networks (DCNNs). For training a deep face parts parsing… More >

  • Open AccessOpen Access

    ARTICLE

    Hybrid Metamodel—NSGA-III—EDAS Based Optimal Design of Thin Film Coatings

    Kamlendra Vikram1, Uvaraja Ragavendran2, Kanak Kalita1,*, Ranjan Kumar Ghadai3, Xiao-Zhi Gao4
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1771-1784, 2021, DOI:10.32604/cmc.2020.013946 - 26 November 2020
    Abstract In this work, diamond-like carbon (DLC) thin film coatings are deposited on silicon substrates by using plasma-enhanced chemical vapour deposition (PECVD) technique. By varying the hydrogen (H2) flow rate, CH4−Argon (Ar) flow rate and deposition temperature (Td) as per a Box-Behnken experimental design (BBD), 15 DLC deposition experiments are carried out. The Young’s modulus (E) and the coefficient of friction (COF) for the DLCs are measured. By using a second-order polynomial regression approach, two metamodels are built for E and COF, that establish them as functions of H2 flow rate, CH4-Ar flow rate and Td. A non-dominated sorting More >

  • Open AccessOpen Access

    ARTICLE

    A Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System

    Amir Haider1, Muhammad Adnan Khan2, Abdur Rehman3, Muhib Ur Rahman4, Hyung Seok Kim1,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1785-1798, 2021, DOI:10.32604/cmc.2020.013910 - 26 November 2020
    (This article belongs to the Special Issue: Machine Learning-based Intelligent Systems: Theories, Algorithms, and Applications)
    Abstract In recent years, cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things (IoT) and the widespread development of computer infrastructure and systems. It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intrusion detection framework that is integral to security. Researchers have worked on developing intrusion detection models that depend on machine learning (ML) methods to address these security problems. An intelligent intrusion detection device powered by data can exploit artificial intelligence (AI), and especially ML, techniques. Accordingly, we propose in More >

  • Open AccessOpen Access

    ARTICLE

    NURBS Modeling and Curve Interpolation Optimization of 3D Graphics

    Hao Zhu1,*, Mulan Wang2, Kun Liu2, Weiye Xu3
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1799-1811, 2021, DOI:10.32604/cmc.2020.012706 - 26 November 2020
    Abstract In order to solve the problem of complicated Non-Uniform Rational B-Splines (NURBS) modeling and improve the real-time performance of the high-order derivative of the curve interpolation process, the method of NURBS modeling based on the slicing and layering of triangular mesh is introduced. The research and design of NURBS curve interpolation are carried out from the two aspects of software algorithm and hardware structure. Based on the analysis of the characteristics of traditional computing methods with Taylor series expansion, the Adams formula and the Runge-Kutta formula are used in the NURBS curve interpolation process, and More >

  • Open AccessOpen Access

    ARTICLE

    Real Estate Management via a Decentralized Blockchain Platform

    Iftikhar Ahmad1,*, Mohammed A. Alqarni2, Abdulwahab Ali Almazroi3, Laiba Alam1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1813-1822, 2021, DOI:10.32604/cmc.2020.013048 - 26 November 2020
    Abstract Blockchain technology is one of the key technological breakthroughs of the last decade. It has the ability to revolutionize numerous aspects of society, including financial systems, healthcare, e-government and many others. One such area that is able to reap the benefits of blockchain technology is the real estate industry. Like many other industries, real estate faces major administrative problems such as high transaction fees, a lack of transparency, fraud and the effects of a middleman including undue influence and commissions. Blockchain enables supporting technologies to overcome the obstacles inherent within the real estate investment market.… More >

  • Open AccessOpen Access

    ARTICLE

    Analysis and Dynamics of Fractional Order Mathematical Model of COVID-19 in Nigeria Using Atangana-Baleanu Operator

    Olumuyiwa J. Peter1, Amjad S. Shaikh2,*, Mohammed O. Ibrahim1, Kottakkaran Sooppy Nisar3, Dumitru Baleanu4,5,6, Ilyas Khan7, Adesoye I. Abioye1
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1823-1848, 2021, DOI:10.32604/cmc.2020.012314 - 26 November 2020
    (This article belongs to the Special Issue: Mathematical aspects of the Coronavirus Disease 2019 (COVID-19): Analysis and Control)
    Abstract We propose a mathematical model of the coronavirus disease 2019 (COVID-19) to investigate the transmission and control mechanism of the disease in the community of Nigeria. Using stability theory of differential equations, the qualitative behavior of model is studied. The pandemic indicator represented by basic reproductive number R0 is obtained from the largest eigenvalue of the next-generation matrix. Local as well as global asymptotic stability conditions for the disease-free and pandemic equilibrium are obtained which determines the conditions to stabilize the exponential spread of the disease. Further, we examined this model by using Atangana–Baleanu fractional derivative… More >

  • Open AccessOpen Access

    ARTICLE

    Managing Security-Risks for Improving Security-Durability of Institutional Web-Applications: Design Perspective

    Abdulaziz Attaallah1, Abdullah Algarni1, Raees Ahmad Khan2,*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1849-1865, 2021, DOI:10.32604/cmc.2020.013854 - 26 November 2020
    Abstract The advanced technological need, exacerbated by the flexible time constraints, leads to several more design level unexplored vulnerabilities. Security is an extremely vital component in software development; we must take charge of security and therefore analysis of software security risk assumes utmost significance. In order to handle the cyber-security risk of the web application and protect individuals, information and properties effectively, one must consider what needs to be secured, what are the perceived threats and the protection of assets. Security preparation plans, implements, tracks, updates and consistently develops safety risk management activities. Risk management must… More >

  • Open AccessOpen Access

    ARTICLE

    A Parallel Approach to Discords Discovery in Massive Time Series Data

    Mikhail Zymbler*, Alexander Grents, Yana Kraeva, Sachin Kumar
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1867-1878, 2021, DOI:10.32604/cmc.2020.014232 - 26 November 2020
    Abstract A discord is a refinement of the concept of an anomalous subsequence of a time series. Being one of the topical issues of time series mining, discords discovery is applied in a wide range of real-world areas (medicine, astronomy, economics, climate modeling, predictive maintenance, energy consumption, etc.). In this article, we propose a novel parallel algorithm for discords discovery on high-performance cluster with nodes based on many-core accelerators in the case when time series cannot fit in the main memory. We assumed that the time series is partitioned across the cluster nodes and achieved parallelization… More >

  • Open AccessOpen Access

    ARTICLE

    A New Database Intrusion Detection Approach Based on Hybrid Meta-Heuristics

    Youseef Alotaibi*
    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1879-1895, 2021, DOI:10.32604/cmc.2020.013739 - 26 November 2020
    Abstract A new secured database management system architecture using intrusion detection systems (IDS) is proposed in this paper for organizations with no previous role mapping for users. A simple representation of Structured Query Language queries is proposed to easily permit the use of the worked clustering algorithm. A new clustering algorithm that uses a tube search with adaptive memory is applied to database log files to create users’ profiles. Then, queries issued for each user are checked against the related user profile using a classifier to determine whether or not each query is malicious. The IDS… More >

Per Page:

Share Link