Open Access
ARTICLE
Artificial Intelligence-Based Semantic Segmentation of Ocular Regions for Biometrics and Healthcare Applications
1 Department of Unmanned Vehicle Engineering, Sejong University, Seoul, 05006, Korea
2 School of Computational Science, Korea Institute for Advanced Study (KIAS), Seoul, 02455, Korea
3 Department of Software, Gachon University, Seongnam, 13120, Korea
* Corresponding Author: Woong-Kee Loh. Email:
(This article belongs to the Special Issue: Intelligent Decision Support Systems for Complex Healthcare Applications)
Computers, Materials & Continua 2021, 66(1), 715-732. https://doi.org/10.32604/cmc.2020.013249
Received 30 July 2020; Accepted 11 September 2020; Issue published 30 October 2020
Abstract
Multiple ocular region segmentation plays an important role in different applications such as biometrics, liveness detection, healthcare, and gaze estimation. Typically, segmentation techniques focus on a single region of the eye at a time. Despite the number of obvious advantages, very limited research has focused on multiple regions of the eye. Similarly, accurate segmentation of multiple eye regions is necessary in challenging scenarios involving blur, ghost effects low resolution, off-angles, and unusual glints. Currently, the available segmentation methods cannot address these constraints. In this paper, to address the accurate segmentation of multiple eye regions in unconstrainted scenarios, a lightweight outer residual encoder-decoder network suitable for various sensor images is proposed. The proposed method can determine the true boundaries of the eye regions from inferior-quality images using the high-frequency information flow from the outer residual encoder-decoder deep convolutional neural network (called ORED-Net). Moreover, the proposed ORED-Net model does not improve the performance based on the complexity, number of parameters or network depth. The proposed network is considerably lighter than previous state-of-theart models. Comprehensive experiments were performed, and optimal performance was achieved using SBVPI and UBIRIS.v2 datasets containing images of the eye region. The simulation results obtained using the proposed OREDNet, with the mean intersection over union score (mIoU) of 89.25 and 85.12 on the challenging SBVPI and UBIRIS.v2 datasets, respectively.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.