Open Access iconOpen Access

ARTICLE

crossmark

Resampling Factor Estimation via Dual-Stream Convolutional Neural Network

by Shangjun Luo1, Junwei Luo1, Wei Lu1,*, Yanmei Fang1, Jinhua Zeng2, Shaopei Shi2, Yue Zhang3,4

1 School of Data and Computer Science, Guangdong Province Key Laboratory of Information Security Technology, Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing, Sun Yat-sen University, Guangzhou, 510006, China
2 Academy of Forensic Science, Shanghai, 200063, China
3 College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
4 Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, USA

* Corresponding Author: Wei Lu. Email: email

Computers, Materials & Continua 2021, 66(1), 647-657. https://doi.org/10.32604/cmc.2020.012869

Abstract

The estimation of image resampling factors is an important problem in image forensics. Among all the resampling factor estimation methods, spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest. However, because of inherent ambiguity, spectrum-based methods fail to discriminate upscale and downscale operations without any prior information. In general, the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image. Firstly, the resampling process will introduce correlations between neighboring pixels. In this case, a set of periodic pixels that are correlated to their neighbors can be found in a resampled image. Secondly, the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks. Hence, in this paper, we propose a dual-stream convolutional neural network for image resampling factors estimation. One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images. The other is frequency stream that discovers the differences of spectrum between rescaled and original images. The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain, which is later fed into softmax layer for resampling factor estimation. Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods.

Keywords


Cite This Article

APA Style
Luo, S., Luo, J., Lu, W., Fang, Y., Zeng, J. et al. (2021). Resampling factor estimation via dual-stream convolutional neural network. Computers, Materials & Continua, 66(1), 647-657. https://doi.org/10.32604/cmc.2020.012869
Vancouver Style
Luo S, Luo J, Lu W, Fang Y, Zeng J, Shi S, et al. Resampling factor estimation via dual-stream convolutional neural network. Comput Mater Contin. 2021;66(1):647-657 https://doi.org/10.32604/cmc.2020.012869
IEEE Style
S. Luo et al., “Resampling Factor Estimation via Dual-Stream Convolutional Neural Network,” Comput. Mater. Contin., vol. 66, no. 1, pp. 647-657, 2021. https://doi.org/10.32604/cmc.2020.012869



cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2446

    View

  • 1521

    Download

  • 0

    Like

Share Link