Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Tissue Segmentation in Nasopharyngeal CT Images Using TwoStage Learning

Yong Luo1, Xiaojie Li2, Chao Luo2, Feng Wang1, Xi Wu2, Imran Mumtaz3, Cheng Yi1, *

1 West China Hospital, Sichuan University, Chengdu, 610000, China.
2 Chengdu University of Information Technology, Chengdu, 610000, China.
3 University of Agriculture, Faisalabad, 38000, Pakistan.

* Corresponding Author: Cheng Yi. Email: email.

Computers, Materials & Continua 2020, 65(2), 1771-1780. https://doi.org/10.32604/cmc.2020.010069

Abstract

Tissue segmentation is a fundamental and important task in nasopharyngeal images analysis. However, it is a challenging task to accurately and quickly segment various tissues in the nasopharynx region due to the small difference in gray value between tissues in the nasopharyngeal image and the complexity of the tissue structure. In this paper, we propose a novel tissue segmentation approach based on a two-stage learning framework and U-Net. In the proposed methodology, the network consists of two segmentation modules. The first module performs rough segmentation and the second module performs accurate segmentation. Considering the training time and the limitation of computing resources, the structure of the second module is simpler and the number of network layers is less. In addition, our segmentation module is based on U-Net and incorporates a skip structure, which can make full use of the original features of the data and avoid feature loss. We evaluated our proposed method on the nasopharyngeal dataset provided by West China Hospital of Sichuan University. The experimental results show that the proposed method is superior to many standard segmentation structures and the recently proposed nasopharyngeal tissue segmentation method, and can be easily generalized across different tissue types in various organs.

Keywords


Cite This Article

APA Style
Luo, Y., Li, X., Luo, C., Wang, F., Wu, X. et al. (2020). Tissue segmentation in nasopharyngeal CT images using twostage learning. Computers, Materials & Continua, 65(2), 1771-1780. https://doi.org/10.32604/cmc.2020.010069
Vancouver Style
Luo Y, Li X, Luo C, Wang F, Wu X, Mumtaz I, et al. Tissue segmentation in nasopharyngeal CT images using twostage learning. Comput Mater Contin. 2020;65(2):1771-1780 https://doi.org/10.32604/cmc.2020.010069
IEEE Style
Y. Luo et al., “Tissue Segmentation in Nasopharyngeal CT Images Using TwoStage Learning,” Comput. Mater. Contin., vol. 65, no. 2, pp. 1771-1780, 2020. https://doi.org/10.32604/cmc.2020.010069

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2433

    View

  • 1399

    Download

  • 0

    Like

Related articles

Share Link