Table of Content

Open Access iconOpen Access

ARTICLE

A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics

Hangjun Zhou1,2,*, Guang Sun1,3, Sha Fu1, Wangdong Jiang1, Juan Xue1

Hunan University of Finance and Economy, Changsha, 410205, China.
Nanjing University of Science and Technology, Nanjing, 210094, China.
College of Engineering, The University of Alabama, Box 870200, Tuscaloosa, Alabama, USA.

* Corresponding Author: Hangjun Zhou. Email: email.

Computers, Materials & Continua 2019, 60(1), 179-192. https://doi.org/10.32604/cmc.2019.05214

Abstract

With the rapid development of mobile Internet and finance technology, online e-commerce transactions have been increasing and expanding very fast, which globally brings a lot of convenience and availability to our life, but meanwhile, chances of committing frauds also come in all shapes and sizes. Moreover, fraud detection in online e-commerce transactions is not totally the same to that in the existing areas due to the massive amounts of data generated in e-commerce, which makes the fraudulent transactions more covertly scattered with genuine transactions than before. In this article, a novel scalable and comprehensive approach for fraud detection in online e-commerce transactions is proposed with majorly four logical modules, which uses big data analytics and machine learning algorithms to parallelize the processing of the data from a Chinese e-commerce company. Groups of experimental results show that the approach is more accurate and efficient to detect frauds in online e-commerce transactions and scalable for big data processing to obtain real-time property.

Keywords


Cite This Article

APA Style
Zhou, H., Sun, G., Fu, S., Jiang, W., Xue, J. (2019). A scalable approach for fraud detection in online e-commerce transactions with big data analytics. Computers, Materials & Continua, 60(1), 179-192. https://doi.org/10.32604/cmc.2019.05214
Vancouver Style
Zhou H, Sun G, Fu S, Jiang W, Xue J. A scalable approach for fraud detection in online e-commerce transactions with big data analytics. Comput Mater Contin. 2019;60(1):179-192 https://doi.org/10.32604/cmc.2019.05214
IEEE Style
H. Zhou, G. Sun, S. Fu, W. Jiang, and J. Xue, “A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics,” Comput. Mater. Contin., vol. 60, no. 1, pp. 179-192, 2019. https://doi.org/10.32604/cmc.2019.05214

Citations




cc Copyright © 2019 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 4563

    View

  • 4288

    Download

  • 0

    Like

Share Link