A Scalable Method of Maintaining Order Statistics for Big Data Stream
Zhaohui Zhang*,1,2,3, Jian Chen1, Ligong Chen1, Qiuwen Liu1, Lijun Yang1, Pengwei Wang1,2,3, Yongjun Zheng4
CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 117-132, 2019, DOI:10.32604/cmc.2019.05325
Abstract Recently, there are some online quantile algorithms that work on how to analyze the order statistics about the high-volume and high-velocity data stream, but the drawback of these algorithms is not scalable because they take the GK algorithm as the subroutine, which is not known to be mergeable. Another drawback is that they can’t maintain the correctness, which means the error will increase during the process of the window sliding. In this paper, we use a novel data structure to store the sketch that maintains the order statistics over sliding windows. Therefore three algorithms have… More >