Table of Content

Open Access iconOpen Access

ARTICLE

Identifying Materials of Photographic Images and Photorealistic Computer Generated Graphics Based on Deep CNNs

by Qi Cui1, Suzanne McIntosh3, Huiyu Sun3

School of Computer and Software, Nanjing University of Information Science and Technology, Ning Liu Road, No. 219, Nanjing, 210044, China.
Jiangsu Engineering Centre of Network Monitoring, Ning Liu Road, No. 219, Nanjing, 210044, China.
Computer Science Department, New York University, New York, NY 10012, USA .

* Corresponding author: Qi Cui. Email: email.

Computers, Materials & Continua 2018, 55(2), 229-241. https://doi.org/10.3970/cmc.2018.01693

Abstract

Currently, some photorealistic computer graphics are very similar to photographic images. Photorealistic computer generated graphics can be forged as photographic images, causing serious security problems. The aim of this work is to use a deep neural network to detect photographic images (PI) versus computer generated graphics (CG). In existing approaches, image feature classification is computationally intensive and fails to achieve real-time analysis. This paper presents an effective approach to automatically identify PI and CG based on deep convolutional neural networks (DCNNs). Compared with some existing methods, the proposed method achieves real-time forensic tasks by deepening the network structure. Experimental results show that this approach can effectively identify PI and CG with average detection accuracy of 98%.

Keywords


Cite This Article

APA Style
Cui, Q., McIntosh, S., Sun, H. (2018). Identifying materials of photographic images and photorealistic computer generated graphics based on deep cnns. Computers, Materials & Continua, 55(2), 229-241. https://doi.org/10.3970/cmc.2018.01693
Vancouver Style
Cui Q, McIntosh S, Sun H. Identifying materials of photographic images and photorealistic computer generated graphics based on deep cnns. Comput Mater Contin. 2018;55(2):229-241 https://doi.org/10.3970/cmc.2018.01693
IEEE Style
Q. Cui, S. McIntosh, and H. Sun, “Identifying Materials of Photographic Images and Photorealistic Computer Generated Graphics Based on Deep CNNs,” Comput. Mater. Contin., vol. 55, no. 2, pp. 229-241, 2018. https://doi.org/10.3970/cmc.2018.01693



cc Copyright © 2018 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3205

    View

  • 1465

    Download

  • 0

    Like

Share Link