Home / Journals / CMC / Vol.51, No.3, 2016
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Higher-Order Line Element Analysis of Potential Field with Slender Heterogeneities

    H.-S. Wang1,2, H. Jiang3,4, B. Yang2
    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 145-161, 2016, DOI:10.3970/cmc.2016.051.145
    Abstract Potential field due to line sources residing on slender heterogeneities is involved in various areas, such as heat conduction, potential flow, and electrostatics. Often dipolar line sources are either prescribed or induced due to close interaction with other objects. Its calculation requires a higher-order scheme to take into account the dipolar effect as well as net source effect. In the present work, we apply such a higher-order line element method to analyze the potential field with cylindrical slender heterogeneities. In a benchmark example of two parallel rods, we compare the line element solution with the boundary element solution to show… More >

  • Open AccessOpen Access

    ARTICLE

    A Model to Describe the Fracture of Porous Polygranular Graphite Subject to Neutron Damage and Radiolytic Oxidation

    G. Smith1, E. Schlangen2, P.E.J. Flewitt3, A.G. Crocker4, A. Hodgkins5
    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 163-185, 2016, DOI:10.3970/cmc.2016.051.163
    Abstract Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement (load-displacement) behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material. Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created. These form the input for the second stage, simulating fracture in lattice-type finite element models, which predicts force (load)-displacement and crack propagation paths. Microstructures comprising aligned filler particles, typical of needle coke,… More >

  • Open AccessOpen Access

    ARTICLE

    Fracture Characterization of High-Density Polyethylene Materials Using the Energetic Criterias

    M.N.D. Cherief1, M. Elmeguenni1, M. Benguediab1
    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 187-201, 2016, DOI:10.3970/cmc.2016.051.187
    Abstract Impact behavior of polymers has received considerable attention in recent years, and much work based on fracture mechanic approaches has been carried out. In this paper, fracture behavior in large deformation of a high density polyethylene (HDPE) materials was investigated through experimental impact testing on single edge notched specimen (SENB) and by using theoretical and analytical fracture criteria concepts. Moreover, a review of the main fracture criteria is given in order to characterize the toughness of this polymer in the both cases (static and dynamic). The fractured specimens obtained from the Charpy impact test were characterized with respect to their… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Study Comparing The Effect on Residual Stresses of Two Different Types of Projectiles During Shot Peening

    J. Solórzano-López1, F.A. García-Pastor2, Angélica Flores-Luna3
    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 203-215, 2016, DOI:10.3970/cmc.2016.051.203
    Abstract Shot peening is a widely used technique to improve fatigue life in metallic alloys. This processing technique introduces a subsurface compressive residual stress field through a plastic deformation of the surface caused by the impact of a large number of high-speed projectiles. There are a number of parameters that affect the residual stress field depth and magnitude. The effects of the impact angle, shot speed and shot geometry are currently being researched. In particular, substituting spherical cast shots by cylindrical cut wire shots is an attractive option, especially in terms of cost. The effect of shot geometry on residual stresses,… More >

Per Page:

Share Link