Table of Content

Open Access iconOpen Access

ARTICLE

Singular Boundary Method for Heat Conduction in Layered Materials

H. Htike1,2, W. Chen1,2,3, Y. Gu1,2

Center for Numerical Simulation Software in Engineering and Sciences, Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian
Corresponding author: chenwen@hhu.edu.cn

Computers, Materials & Continua 2011, 24(1), 1-14. https://doi.org/10.3970/cmc.2011.024.001

Abstract

In this paper, we investigate the application of the singular boundary method (SBM) to two-dimensional problems of steady-state heat conduction in isotropic bimaterials. A domain decomposition technique is employed where the bimaterial is decomposed into two subdomains, and in each subdomain, the solution is approximated separately by an SBM-type expansion. The proposed method is tested and compared on several benchmark test problems, and its relative merits over the other boundary discretization methods, such as the method of fundamental solution (MFS) and the boundary element method (BEM), are also discussed.

Keywords


Cite This Article

APA Style
Htike, H., Chen, W., Gu, Y. (2011). Singular boundary method for heat conduction in layered materials. Computers, Materials & Continua, 24(1), 1-14. https://doi.org/10.3970/cmc.2011.024.001
Vancouver Style
Htike H, Chen W, Gu Y. Singular boundary method for heat conduction in layered materials. Comput Mater Contin. 2011;24(1):1-14 https://doi.org/10.3970/cmc.2011.024.001
IEEE Style
H. Htike, W. Chen, and Y. Gu, “Singular Boundary Method for Heat Conduction in Layered Materials,” Comput. Mater. Contin., vol. 24, no. 1, pp. 1-14, 2011. https://doi.org/10.3970/cmc.2011.024.001



cc Copyright © 2011 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1757

    View

  • 1292

    Download

  • 0

    Like

Share Link