Open Access
ARTICLE
Parameter Identification Method of Large Macro-Micro Coupled Constitutive Models Based on Identifiability Analysis
South China University of Technology, Guangzhou, P. R. China
Guangdong Key Laboratory of Automotive Engineering, Guangzhou, P. R. China
Department of Engineering Mechanics, Tsinghua University, Beijing, P. R. China
Advanced Manufacture Technology Center, China Academy of Machinery Science & Technology, No.18, Xueqing Road, Haidian District, Beijing, 100083, P. R. China
Computers, Materials & Continua 2010, 20(2), 119-158. https://doi.org/10.3970/cmc.2010.020.119
Abstract
Large and complex macro-micro coupled constitutive models, which describe metal flow and microstructure evolution during metal forming, are sometimes overparameterized with respect to given sets of experimental datum. This results in poorly identifiable or non-identifiable model parameters. In this paper, a systemic parameter identification method for the large macro-micro coupled constitutive models is proposed. This method is based on the global and local identifiability analysis, in which two identifiability measures are adopted. The first measure accounts for the sensitivity of model results with respect to single parameters, and the second measure accounts for the degree of near-linear dependence of sensitivity functions of parameter subsets. The global identifiability analysis adopts a sampling strategy with only a limited number of model evaluations, and the strategy is a combination of Latin-hypercube sampling, one-factor-at-a-time sampling and elitism preservation strategy. The global identifiability index is the integration of the corresponding local index. A hybrid global optimization method is designed to identify the parameter. Firstly, the genetic algorithm is adopted to identify the model parameter rudely, and then the obtained parameter is further refined through the improved Levenberg-Marquardt algorithm. The niching method is used to maintain the population diversity and to choose the initial value for the Levenberg-Marquardt algorithm. A transition criterion between the genetic algorithm and the Levenberg-Marquardt algorithm is proposed, through the improvement on the average objective function value of the chromosomes and the objective function value of the best chromosome. During optimization by the Levenberg-Marquardt algorithm, the local identifiability analysis is taken at the beginning stage of each iteration, and then the variable with poor identifiability remains unchanged in this iteration; the problem of violation constraint for some solution is solved through adjusting the search step length. At last, taking Ti-6Al-4V as an example, a set of satisfactory material parameters is obtained. The calculated results agree with the experimental results well. The identified results show that some parameters involved in the model are poorly identifiable; at the same time, the identifiability analysis method can provide a guide to experiment design.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.