Table of Content

Open Access iconOpen Access

ARTICLE

Relaxation of Alternating Iterative Algorithms for the Cauchy Problem Associated with the Modified Helmholtz Equation

B. Tomas Johansson1, Liviu Marin2

School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. E-mail: b. t. johansson@bham.ac.uk
Institute of Solid Mechanics, Romanian Academy, 15 Constantin Mille, P.O. Box 1-863, 010141 Bucharest, Romania. E-mails: marin.liviu@gmail.com; liviu@imsar.bu.edu.ro

Computers, Materials & Continua 2009, 13(2), 153-190. https://doi.org/10.3970/cmc.2009.013.153

Abstract

We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of Kozlov, Maz'ya and Fomin(1991) applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.

Keywords


Cite This Article

APA Style
Johansson, B.T., Marin, L. (2009). Relaxation of alternating iterative algorithms for the cauchy problem associated with the modified helmholtz equation. Computers, Materials & Continua, 13(2), 153-190. https://doi.org/10.3970/cmc.2009.013.153
Vancouver Style
Johansson BT, Marin L. Relaxation of alternating iterative algorithms for the cauchy problem associated with the modified helmholtz equation. Comput Mater Contin. 2009;13(2):153-190 https://doi.org/10.3970/cmc.2009.013.153
IEEE Style
B.T. Johansson and L. Marin, “Relaxation of Alternating Iterative Algorithms for the Cauchy Problem Associated with the Modified Helmholtz Equation,” Comput. Mater. Contin., vol. 13, no. 2, pp. 153-190, 2009. https://doi.org/10.3970/cmc.2009.013.153



cc Copyright © 2009 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1897

    View

  • 1526

    Download

  • 0

    Like

Share Link