Open Access iconOpen Access

ARTICLE

crossmark

An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

Zhaolin Lv1, Yuexia Zhao2, Hongyue Kang3,*, Zhenyu Gao3, Yuhang Qin4

1 College of Systems Engineering, National University of Defense Technology, Changsha, 410073, China
2 College of Information Management, Nanjing Agricultural University, Nanjing, 210031, China
3 Department of Intelligent Supply Chain, JD Logistics, Beijing, 100076, China
4 College of Intelligent Science and Technology, National University of Defense Technology, Changsha, 410073, China

* Corresponding Author: Hongyue Kang. Email: email

(This article belongs to the Special Issue: Development and Industrial Application of AI Technologies)

Computers, Materials & Continua 2024, 78(2), 2337-2360. https://doi.org/10.32604/cmc.2023.045826

Abstract

Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic FJSP is investigated to minimize the makespan. This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP. To verify the effectiveness of GNHHO, this study tests it in 23 benchmark functions, 10 standard job shop scheduling problems (JSPs), and 5 standard FJSPs. Besides, this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP. The optimized scheduling scheme demonstrates significant improvements in makespan, with an advancement of 28.16% for static scheduling and 35.63% for dynamic scheduling. Moreover, it achieves an average increase of 21.50% in the on-time order delivery rate. The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.

Keywords


Cite This Article

APA Style
Lv, Z., Zhao, Y., Kang, H., Gao, Z., Qin, Y. (2024). An improved harris hawk optimization algorithm for flexible job shop scheduling problem. Computers, Materials & Continua, 78(2), 2337-2360. https://doi.org/10.32604/cmc.2023.045826
Vancouver Style
Lv Z, Zhao Y, Kang H, Gao Z, Qin Y. An improved harris hawk optimization algorithm for flexible job shop scheduling problem. Comput Mater Contin. 2024;78(2):2337-2360 https://doi.org/10.32604/cmc.2023.045826
IEEE Style
Z. Lv, Y. Zhao, H. Kang, Z. Gao, and Y. Qin, “An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem,” Comput. Mater. Contin., vol. 78, no. 2, pp. 2337-2360, 2024. https://doi.org/10.32604/cmc.2023.045826



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 726

    View

  • 421

    Download

  • 0

    Like

Share Link