Home / Journals / BIOCELL / Vol.48, No.11, 2024
Special Issues
Table of Content
  • Open AccessOpen Access

    COMMENTARY

    A commentary on the interplay of biomaterials and cell adhesion: new insights in bone tissue regeneration

    A. NOEL GRAVINA1,2, NOELIA D´ELÍA1,2, LUCIANO A. BENEDINI2,3,*, PAULA MESSINA1,2
    BIOCELL, Vol.48, No.11, pp. 1517-1520, 2024, DOI:10.32604/biocell.2024.055513 - 07 November 2024
    Abstract This article navigates the relationship between biomaterials and osteogenic cell adhesion, highlighting the importance of mimicking the physiological response for bone tissue regeneration. Within this spirit is an initial description of the interaction between osteoblasts and osteoprogenitor cells with the extracellular matrix, explaining the leading role of integrins and cadherins in cell adhesion, and the intracellular signaling pathways elicited. Additionally, there is a focus on the strategies of advanced biomaterials that foster osteogenesis by replicating the native environment, taking advantage of these known specific signaling pathways. The final remarks lay on the need for careful More >

  • Open AccessOpen Access

    REVIEW

    Advances in micropillar arrays in cellular biomechanics detection and tissue engineering

    XUELING HE, LINLU JIN, YIXUE QIN, JIAN ZHONG, ZHI OUYANG, YE ZENG*
    BIOCELL, Vol.48, No.11, pp. 1521-1529, 2024, DOI:10.32604/biocell.2024.055410 - 07 November 2024
    Abstract Cellular biomechanical features contributed to the occurrence and development of various physiological and pathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment and manipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depth understanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and fine-tuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip and organoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised to update the landscape of stem cell research and tissue engineering. More >

  • Open AccessOpen Access

    REVIEW

    Revolutionizing stem cell research: unbiased insights through single-cell sequencing

    HAO WU#, NA HUO#, SITUO WANG, ZIWEI LIU, YI JIANG*, QUAN SHI*
    BIOCELL, Vol.48, No.11, pp. 1531-1542, 2024, DOI:10.32604/biocell.2024.054278 - 07 November 2024
    Abstract Stem cells have shown great application potential in wound repair, tissue regeneration, and disease treatment. Therefore, a full understanding of stem cells and their related regulatory mechanisms in disease treatment is conducive to improving the therapeutic effect of stem cells. However, thus far, there are still many unsolved mysteries in the field of stem cells due to technical limitations, which hinder the in-depth exploration of stem cells and their wide clinical application. Single-cell sequencing (SCS) has provided very powerful and unbiased insights into cell gene expression profiles at the single-cell level, bringing exciting results to More >

  • Open AccessOpen Access

    REVIEW

    The roles and mechanisms of miRNA in HBV-HCC carcinogenesis: Why no therapeutic agents after 30 years?

    KURT SARTORIUS1,2,3,*, BENN SARTORIUS4, CHERIE WINKLER5, ANIL CHUTURGOON2, ANNA KRAMVIS1, PING AN5, WEIGANG ZHANG6, YUNJIE LU3,6,7,*
    BIOCELL, Vol.48, No.11, pp. 1543-1567, 2024, DOI:10.32604/biocell.2024.055505 - 07 November 2024
    (This article belongs to the Special Issue: Non-coding RNAs (ncRNAs) in Human Diseases)
    Abstract Hepatitis B-associated hepatocellular carcinoma (HBV-HCC) remains an intractable high-mortality solid tumor cancer that accounted for 42% of global HCC cases in 2019. Despite some developments in systemic therapy, only a small subset of late-stage HCC patients responds positively to recently developed therapeutic innovations. MicroRNAs (miRNAs) act as an ancillary epigenetic system that can regulate genome expression in all cancer pathways including HCC. The molecular mechanisms of miRNA regulation in cancer pathogenesis offered researchers a new approach that was widely hoped would translate into miRNA-based drugs and diagnostics. Thirty years on, miRNA-based diagnostic and therapeutic agents… More >

  • Open AccessOpen Access

    REVIEW

    The diverse functions and therapeutic implications of cancer-associated fibroblasts in colorectal cancer

    ZEYIN LAI1, HANGYUAN ZHAO1, HONG DENG1,2,*
    BIOCELL, Vol.48, No.11, pp. 1569-1578, 2024, DOI:10.32604/biocell.2024.053983 - 07 November 2024
    (This article belongs to the Special Issue: Extracellular Matrix in Development and Disease)
    Abstract In the development of colorectal cancer (CRC), cancer-associated fibroblasts (CAFs) play a pivotal role in establishing tumor-permissive extracellular matrix structures, angiogenesis, and modulating the immune status of the tumor microenvironment (TME), thereby influencing tumor metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effects of CAFs in the TME may be attributed to the heterogeneous origin and high plasticity of their population. Given the specificity of CAFs, they provide a variety of potential target molecules for future CRC treatment, which may play an indispensable role in CRC therapeutic strategies. This review summarizes the origin of More >

  • Open AccessOpen Access

    REVIEW

    Impact of nanoparticles on immune cells and their potential applications in cancer immunotherapy

    JYOTHI B. NAIR1,2, ANU MARY JOSEPH3, SANOOP P.4, MANU M. JOSEPH5,*
    BIOCELL, Vol.48, No.11, pp. 1579-1602, 2024, DOI:10.32604/biocell.2024.054879 - 07 November 2024
    (This article belongs to the Special Issue: Genetic Biomarkers of Cancer: Insights into Molecular and Cellular Mechanisms)
    Abstract Nanoparticles represent a heterogeneous collection of materials, whether natural or synthetic, with dimensions aligning in the nanoscale. Because of their intense manifestation with the immune system, they can be harvested for numerous bio-medical and biotechnological advancements mainly in cancer treatment. This review article aims to scrutinize various types of nanoparticles that interact differently with immune cells like macrophages, dendritic cells, T lymphocytes, and natural killer (NK) cells. It also underscores the importance of knowing how nanoparticles influence immune cell functions, such as the production of cytokines and the presentation of antigens which are crucial for… More >

  • Open AccessOpen Access

    ARTICLE

    MPPa-PDT induced apoptosis and autophagy through JNK and p38 MAPK signaling pathways in A549 cells

    PINGHUA TU, SHANSHAN WANG, KELAN DENG, XINJUN LI, ZHANLING WU*
    BIOCELL, Vol.48, No.11, pp. 1603-1612, 2024, DOI:10.32604/biocell.2024.054364 - 07 November 2024
    (This article belongs to the Special Issue: Navigating the Interplay of Cancer, Autophagy, ER Stress, Cell Cycle and Apoptosis: Mechanisms, Therapies, and Future Directions)
    Abstract Objectives: The antitumor effects of pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) were observed in several cancers. The objective of this investigation was to examine the antineoplastic efficacy of MPPa-PDT acting on lung carcinoma A549 cells and further elaborate mechanisms. Methods: The viability of A549 cells was examined with cell counting kit-8 after MPPa-PDT disposal. Hoechst 33342 staining, monodansylcadaverine (MDC) staining, and transmission electron microscopy were employed to observe apoptotic bodies and autophagic vesicles. Flow cytometry with Annexin V/propidium iodide (PI) labeling objectively assessed cell death. The expression of associated proteins, including Caspase-3, Beclin-1, LC-3II, and More >

    Graphic Abstract

    MPPa-PDT induced apoptosis and autophagy through JNK and p38 MAPK signaling pathways in A549 cells

  • Open AccessOpen Access

    ARTICLE

    Glycyrrhizic acid alleviates lung injury in sepsis through SIRT1/HMGB1 pathway

    BINGJIE LIN1, XIAOBO YING2, CHUANLING ZHANG3,*, GUOJUN ZHANG1,*
    BIOCELL, Vol.48, No.11, pp. 1613-1623, 2024, DOI:10.32604/biocell.2024.053652 - 07 November 2024
    Abstract Objectives: This study explores the protective effects of glycyrrhizic acid (GA) on sepsis-induced cellular damage and inflammation in acute lung injury (ALI), specifically through the modulation of the sirtuin 1 (SIRT1) and high mobility group box 1 (HMGB1) pathway. Methods: The study employed two experimental models: lipopolysaccharide (LPS)-induced BEAS-2B human lung epithelial cells and cecal ligation and puncture (CLP) rats, to simulate sepsis conditions. The cell model involved treatments with LPS, GA, control siRNA (si-NC), and SIRT1-specific siRNA (si-SIRT1). Evaluations included cell viability, apoptosis, and cytokine production. In the rat model, treatments included GA and… More >

  • Open AccessOpen Access

    ARTICLE

    Ganoderic acid A ameliorates renal fibrosis by suppressing the expression of NPC1L1

    TIANYUN HAN#, ZHONG LI#, LUONING ZHANG, LINSHEN XIE*
    BIOCELL, Vol.48, No.11, pp. 1625-1638, 2024, DOI:10.32604/biocell.2024.055029 - 07 November 2024
    Abstract Objective: The study aimed to explore the protective mechanism of Ganoderic acid A (GAA) in renal fibrosis and to verify that GAA can ameliorate renal fibrosis by regulating the Niemann-pick C1-like 1 (NPC1L1) gene. Methods: Transforming growth factor beta1 (TGF-β1) was used to treat Human Kidney-2 (HK-2) cells to establish a renal fibrosis model. The differentially expressed genes in the control (CTRL) group, TGF-β1 group, and TGF-β1 + GAA group were screened via transcriptome sequencing technology and verified by qPCR and Western blot experiments. The NPC1L1 gene overexpression plasmid was constructed. The expression levels of N-cad, E-cad,… More >

Per Page:

Share Link