Open Access iconOpen Access

REVIEW

crossmark

Mesenchymal stem cells: As a multi-target cell therapy for clearing β-amyloid deposition in Alzheimer’s disease

RUXIN ZHANG1, CHENGGANG LI2, RUOCHEN DU1, YITONG YUAN1, BICHUN ZHAO1, YUJUAN ZHANG1, CHUNFANG WANG1,*

1 Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030000, China
2 Department of Orthopaedics, Second Hospital Shanxi Medical University, Taiyuan, 030000, China

* Corresponding Author: CHUNFANG WANG. Email: email

(This article belongs to this Special Issue: Cell-Based Regenerative Therapies)

BIOCELL 2022, 46(3), 583-592. https://doi.org/10.32604/biocell.2022.017248

Abstract

Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer’s disease (AD). Studies have shown that aggregates of extracellular Aβ can induce neuroinflammation mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors. Thus, modulation of Aβ might be a potential therapeutic strategy for modifying disease progression. Recently, a large number of reports have confirmed the beneficial effects of mesenchymal stem cells (MSCs) on AD. It is believed to reduce neuroinflammation, reduce Aβ amyloid deposits and NFTs, increase acetylcholine levels, promote neurogenesis, reduce neuronal damage, and improve working memory and cognition. In this review, we focus on the role of MSCs in clearing Aβ deposition. MSCs have the potential to modulate Aβ-related microenvironments via enhancement of autophagy, proteolysis of Aβ aggregates, phagocytic clearance of Aβ by microglial M2 polarization, decrease oxidative stress (OS), and correction of abnormal sphingolipid (SL) metabolism. With advantages in clinical applications, these data suggest that the use of MSCs as a multi-target modulator of Aβ would be an effective therapeutic approach in AD.

Keywords


Cite This Article

ZHANG, R., LI, C., DU, R., YUAN, Y., ZHAO, B. et al. (2022). Mesenchymal stem cells: As a multi-target cell therapy for clearing β-amyloid deposition in Alzheimer’s disease. BIOCELL, 46(3), 583–592.



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1538

    View

  • 998

    Download

  • 0

    Like

Share Link