Open Access
ARTICLE
Pharmacotherapeutics and molecular docking studies of alpha-synuclein modulators as promising therapeutics for Parkinson’s disease
1 Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, 110062, India
2 Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
3 Department of Pharmaceutical Sciences, Gurukul Kangri University, Uttarakhand, 249404, India
4 Department of Pharmacology HIMSR, Jamia Hamdard, New Delhi, 110062, India
* Corresponding Author: RAZI AHMAD. Email:
BIOCELL 2022, 46(12), 2681-2694. https://doi.org/10.32604/biocell.2022.021224
Received 02 January 2022; Accepted 11 April 2022; Issue published 10 August 2022
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative ailment that affects dopamine-producing neurons in a specific area of the brain called the substantia nigra of the ventral midbrain. It is clinically characterized by movement disorder and marked with unusual synaptic protein alpha-synuclein accumulation in the brain. To date, only a few Food and Drug Administration (FDA) approved drugs are available on the market for the treatment of PD. Nonetheless, these drugs show parasympathomimetic related adverse events and remarkably higher toxicity; hence, it is important to find more efficacious molecules to treat PD. In our study, We chosen 22 natural compounds as inhibitors that potentially block the alpha-synuclein clump—the pathological hallmark of PD—and provide new avenues for its treatment. Most of these molecules exhibited good pharmacokinetic behaviors, making them decisively favorable drug candidates to cure PD. Molecular docking studies were performed to investigate the binding interactions between natural compounds and alpha-synuclein as anti-Parkinson drug targets. Among the examined compounds, curcumin and piperine emerged as promising phytochemicals with the highest binding affinity, key residual stable bindings and showed a good inhibitory features. Thus, the present study indicates that curcumin and piperine hold the potential to be developed as treatment options against PD. Experimental validations are needed for insights into their mechanism of action and potential clinical application.Keywords
Supplementary Material
Supplementary Material FileCite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.