Open Access
ARTICLE
Research on Prediction Methods of Energy Consumption Data
1 Xinjiang Research Institute of Building Sciences (Co., Ltd.), Urumqi, 830000, China
2 School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China
3 Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, 100083, China
* Corresponding Author: Jiping Ren. Email:
Journal of New Media 2020, 2(3), 99-109. https://doi.org/10.32604/jnm.2020.09889
Received 17 January 2020; Accepted 31 January 2020; Issue published 04 September 2020
Abstract
This paper analyzes the energy consumption situation in Beijing, based on the comparison of common energy consumption prediction methods. Here we use multiple linear regression analysis, grey prediction, BP neural net-work prediction, grey BP neural network prediction combined method, LSTM long-term and short-term memory network model prediction method. Firstly, before constructing the model, the whole model is explained theoretically. The advantages and disadvantages of each model are analyzed before the modeling, and the corresponding advantages and disadvantages of these models are pointed out. Finally, these models are used to construct the Beijing energy forecasting model, and some years are selected as test samples to test the prediction accuracy. Finally, all models were used to predict the development trend of Beijing's total energy consumption from 2018 to 2019, and the relevant energy-saving opinions were given.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.