Open Access
ARTICLE
Numerical Experiments of a Benchmark Hull Based on a Turbulent Free-surface Flow Model
China Ship Scientific Research Center, Wuxi Jiangsu 214082, China
School of Math & Applied Stats, University of Wollongong, Wollongong, NSW 2522, Australia. The Corresponding Author’s email address: spz@uow.edu.au
Computer Modeling in Engineering & Sciences 2005, 9(3), 273-286. https://doi.org/10.3970/cmes.2005.009.273
Abstract
In this paper, the steady viscous flow around a ship hull with free surface is studied through solving Reynolds Averaged Navier-Stokes (RANS) equations numerically. The RANS solver is based on a cell-centered finite-volume discretization. In our study, the turbulence is modeled through an SST (Shear Stress Transport) k - ω turbulence model in conjunction with the wall function approach for the near-wall simulation. The VOF method is used for the free surface treatment. Calculations for two typical benchmark surface ship models, Wigley and DTMB 5415, are carried out first for the purpose of model validation. The numerical results are compared with the experimental data and other published CFD solutions in terms of wave field, wake flow and resistance coefficients. For the benchmark comparison, the model simulation has reproduced all the salient features of the flow with good accuracy. The model is then used to study the influence of Froude number variation on the wave resistance and wave pattern for a Series-60 ship model. Quantitative agreement between the numerical simulation and laboratory test results has been observed. This demonstrates that our CFD model is capable of simulating the steady viscous flow around a ship hull with an acceptable accuracy and thus can be used as a complementary tool to laboratory model tests for ship design and ship hydrodynamic research.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.