Table of Content

Open Access iconOpen Access

ARTICLE

Eshelby Stress Tensor T: a Variety of Conservation Laws for T in Finite Deformation Anisotropic Hyperelastic Solid & Defect Mechanics, and the MLPG-Eshelby Method in Computational Finite Deformation Solid Mechanics-Part I

by Z. D. Han1, S. N. Atluri2

Livermore Software Technology Corporation, Livermore, CA, 94551, USA
International Collaboratory for Fundamental Studies in Engineering and the Sciences, 4131 Engineering Gateway, University of California, Irvine, Irvine, CA, 92697, USA
Fellow & Eminent Scholar, Texas Institute for Advanced Study, TAMU-3474, College Station, TX 77843, USA

Computer Modeling in Engineering & Sciences 2014, 97(1), 1-34. https://doi.org/10.3970/cmes.2014.097.001

Abstract

The concept of a stress tensor [for instance, the Cauchy stress σ, Cauchy (1789-1857); the first Piola-Kirchhoff stress P, Piola (1794-1850), and Kirchhoff (1824-1889); and the second Piola-Kirchhoff stress, S] plays a central role in Newtonian continuum mechanics, through a physical approach based on the conservation laws for linear and angular momenta. The pioneering work of Noether (1882-1935), and the extraordinarily seminal work of Eshelby (1916- 1981), lead to the concept of an “energy-momentum tensor” [Eshelby (1951)]. An alternate form of the “energy-momentum tensor” was also given by Eshelby (1975) by taking the two-point deformation gradient tensor as an independent field variable; and this leads to a stress measure T (which may be named as the Eshelby Stress Tensor). The corresponding conservation laws for T in terms of the pathindependent integrals, given by Eshelby (1975), were obtained through a sequence of imagined operations to “cut the stress states” in the current configuration. These imagined operations can not conceptually be extended to nonlinear steady state or transient dynamic problems [Eshelby (1975)]. To the authors’ knowledge, these path-independent integrals for dynamic finite-deformations of inhomogeneous materials were first derived by Atluri (1982) by examining the various internal and external work quantities during finite elasto-visco-plastic dynamic deformations, to derive the energy conservation laws, in the undeformed configuration [ref. to Eq. (18) in Atluri (1982)]. The stress tensor T was derived, independently, in its path-independent integral form for computational purposes [ref. to Eq. (30) in Atluri (1982)]. The corresponding integrals were successfully applied to nonlinear dynamic fracture analysis to determine “the energy change rate”, denoted as T*. A similar analytical work for elasto-statics was reported by Hill (1986). With the use of the stress measure T for finite-deformation solid and defect mechanics, the concept of “the strength of the singularities”, labeled in this paper as the vector T*, is formulated for a defective hyperelastic anisotropic solid undergoing finite deformations, in its various path-independent integral forms.
We first derive a vector balance law for the Eshelby stress tensor T, and show that it involves a mathematically “weak-form” of a vector momentum balance law for P. In small deformation linear elasticity (where P, S and σ are all equivalent), the stress tensor σ is linear in the deformation gradient F. Even in small deformation linear elasticity, the Eshelby Stress Tensor T is quadratic in F. By considering the various weak-forms of the balance law for T itself, we derive a variety of “conservation laws” for T in Section 2. We derive four important “path-independent” integrals, TK, TL∗(L) , T∗(M), TIJ∗(G) , in addition to many others. We show the relation of TK, TL∗(L) , T∗(M) integrals to the J-, L- and M- integrals given in Knowles and Sternberg (1972). The four laws derived in this paper are, however, valid for finite-deformation anisotropic hyperelastic solid- and defect-mechanics. Some discussions related to the use of T in general computational solid mechanics of finitely deformed solids are given in Section 3. The application of the Eshelby stress tensor in computing the deformation of a one-dimensional bar is formulated in Section 4 for illustration purposes. We present two computational approaches: the Primal Meshless Local Petrov Galerkin (MLPG)-Eshelby Method, and the Mixed MLPG-Eshelby Method, as applications of the original MLPG method proposed by Atluri (1998,2004). More general applications of T directly, in computational solid mechanics of finitely deformed solids, will be reported in our forthcoming papers, for mechanical problems, in their explicitly-linearized forms, through the Primal MLPG-Eshelby and the Mixed MLPG-Eshelby Methods.

Keywords


Cite This Article

APA Style
Han, Z.D., Atluri, S.N. (2014). Eshelby stress tensor T: a variety of conservation laws for T in finite deformation anisotropic hyperelastic solid & defect mechanics, and the mlpg-eshelby method in computational finite deformation solid mechanics-part I. Computer Modeling in Engineering & Sciences, 97(1), 1-34. https://doi.org/10.3970/cmes.2014.097.001
Vancouver Style
Han ZD, Atluri SN. Eshelby stress tensor T: a variety of conservation laws for T in finite deformation anisotropic hyperelastic solid & defect mechanics, and the mlpg-eshelby method in computational finite deformation solid mechanics-part I. Comput Model Eng Sci. 2014;97(1):1-34 https://doi.org/10.3970/cmes.2014.097.001
IEEE Style
Z. D. Han and S. N. Atluri, “Eshelby Stress Tensor T: a Variety of Conservation Laws for T in Finite Deformation Anisotropic Hyperelastic Solid & Defect Mechanics, and the MLPG-Eshelby Method in Computational Finite Deformation Solid Mechanics-Part I,” Comput. Model. Eng. Sci., vol. 97, no. 1, pp. 1-34, 2014. https://doi.org/10.3970/cmes.2014.097.001



cc Copyright © 2014 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1588

    View

  • 959

    Download

  • 0

    Like

Share Link