Table of Content

Open Access

REVIEW

Applications of the MLPG Method in Engineering & Sciences: A Review

J. Sladek1, P. Stanak1, Z-D. Han2, V. Sladek1, S.N. Atluri2
Slovak Academy of Sciences, Bratislava, Slovakia.
International Collaboratory for Fundamental Studies in the Engineering Sciences, UCI, Irvine, USA.

Computer Modeling in Engineering & Sciences 2013, 92(5), 423-475. https://doi.org/10.3970/cmes.2013.092.423

Abstract

A review is presented for analysis of problems in engineering & the sciences, with the use of the meshless local Petrov-Galerkin (MLPG) method. The success of the meshless methods lie in the local nature, as well as higher order continuity, of the trial function approximations, high adaptivity and a low cost to prepare input data for numerical analyses, since the creation of a finite element mesh is not required. There is a broad variety of meshless methods available today; however the focus is placed on the MLPG method, in this paper. The MLPG method is a fundamental base for the derivation of many meshless formulations, since the trial and test functions can be chosen from different functional spaces. In the last decade, a broad community of researchers and scientists contributed to the development and implementation of the MLPG method in a wide range of scientific disciplines. This paper first presents the basics and principles of the MLPG method, the meshless local approximation techniques for trial and test functions, applications to elasticity and elastodynamics, plasticity, fracture and crack analysis, heat transfer and fluid flow, coupled problems involving multiphase materials, and techniques for increasing the accuracy and computational effectiveness. Various applications to 2-D planar problems, axisymmetric problems, plates and shells or 3-D problems are included. An increased number of published papers in literature in the recent years can be considered as a measure of the growing research activity in the general scope of the MLPG method, and thus, several trends and ideas for future research interest are also outlined.

Keywords

meshless local Petrov-Galerkin (MLPG) method, meshless local approximation schemes for trial and test functions, local weak forms, numerical applications

Cite This Article

Sladek, J., Stanak, P., Han, Z., Sladek, V., Atluri, S. (2013). Applications of the MLPG Method in Engineering & Sciences: A Review. CMES-Computer Modeling in Engineering & Sciences, 92(5), 423–475.



This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 672

    View

  • 573

    Download

  • 0

    Like

Related articles

Share Link

WeChat scan