Table of Content

Open Access iconOpen Access

ARTICLE

Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 1: 2D Structures

Leiting Dong1,2, Satya N. Atluri1,3

Center for Aerospace Research & Education, University of California, Irvine
Department of Engineering Mechanics, Hohai University
Distinguished Adjunct-Professor of Multi-Disciplinary Engineering and Computer Science, King Abdulaziz University, Saudi Arabia

Computer Modeling in Engineering & Sciences 2013, 90(2), 91-146. https://doi.org/10.3970/cmes.2013.090.091

Abstract

In this paper, and its companion Part 2 [Dong and Atluri (2013b)], the Symmetric Galerkin Boundary Element Method (SGBEM), and the SGBEM-FEM alternating/coupling methods, are compared with the recently popularized Extended Finite Element Method (XFEM), for analyzing fracture and fatigue crack propagation in complex structural geometries. The historical development, and the theoretical/algorithmic formulations, of each method are succinctly reviewed. The advantages and disadvantages of each method are critically discussed. A comprehensive evaluation of the performances of the SGBEM-based methods, and their comparison with XFEM, in modeling cracked solid structures undergoing fatigue crack-growth is carried out. A thorough examination of a large set of numerical examples of varying degrees of complexity shows that, the SGBEM-based methods: (a) are far more accurate than XFEM for computing stress intensity factors, and thus the fatigue-crack-growth-rates; (b) require significantly coarser and lower-quality meshes than in XFEM, and thus result in significant savings of computational costs, and more importantly in considerable savings of the human-labor-costs of generating meshes; (c) require minimal effort for modeling the non-collinear/non-planar propagation of cracks under fatigue, without using the Level Set or Fast Marching methods to track the crack surface; (d) can easily perform fracture and fatigue analysis of complex structures, such as repaired cracked structures with composite patches, and damage in heterogeneous materials. It is thus concluded that the SGBEM-based methods, and alternating methods, which were developed over the past 20-30 years by Atluri and his many collaborators, are by far the best methods for analyzing fracture and non-planar fatigue crack propagation in complex structures, and are thus valuable for inclusion in general-purpose, off-the-shelf commercial software for structural analyses. This objective is pursued by the authors.

Keywords


Cite This Article

APA Style
Dong, L., Atluri, S.N. (2013). Fracture & fatigue analyses: SGBEM-FEM or XFEM? part 1: 2D structures. Computer Modeling in Engineering & Sciences, 90(2), 91-146. https://doi.org/10.3970/cmes.2013.090.091
Vancouver Style
Dong L, Atluri SN. Fracture & fatigue analyses: SGBEM-FEM or XFEM? part 1: 2D structures. Comput Model Eng Sci. 2013;90(2):91-146 https://doi.org/10.3970/cmes.2013.090.091
IEEE Style
L. Dong and S.N. Atluri, “Fracture & Fatigue Analyses: SGBEM-FEM or XFEM? Part 1: 2D Structures,” Comput. Model. Eng. Sci., vol. 90, no. 2, pp. 91-146, 2013. https://doi.org/10.3970/cmes.2013.090.091



cc Copyright © 2013 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2037

    View

  • 1352

    Download

  • 0

    Like

Share Link