Table of Content

Open Access iconOpen Access

ARTICLE

A New Optimal Scheme for Solving Nonlinear Heat Conduction Problems

Chih-Wen Chang1,2, Chein-Shan Liu3

Computing Technology Integration Division, National Center for High-Performance Computing, Taichung 40763, Taiwan
Corresponding author, Tel.:+886-4-24620202#860. E-mail address: 0903040@nchc.narl.org.tw
Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan

Computer Modeling in Engineering & Sciences 2012, 88(4), 269-292. https://doi.org/10.3970/cmes.2012.088.269

Abstract

In this article, we utilize an optimal vector driven algorithm (OVDA) to cope with the nonlinear heat conduction problems (HCPs). From this set of nonlinear ordinary differential equations, we propose a purely iterative scheme and the spatial-discretization of finite difference method for revealing the solution vector x, without having to invert the Jacobian matrix D. Furthermore, we introduce three new ideas of bifurcation, attracting set and optimal combination, which are restrained by two parameters g and a. Several numerical instances of nonlinear systems under noise are examined, finding that the OVDA has a fast convergence rate, great computation accuracy and efficiency.

Keywords


Cite This Article

APA Style
Chang, C., Liu, C. (2012). A new optimal scheme for solving nonlinear heat conduction problems. Computer Modeling in Engineering & Sciences, 88(4), 269-292. https://doi.org/10.3970/cmes.2012.088.269
Vancouver Style
Chang C, Liu C. A new optimal scheme for solving nonlinear heat conduction problems. Comput Model Eng Sci. 2012;88(4):269-292 https://doi.org/10.3970/cmes.2012.088.269
IEEE Style
C. Chang and C. Liu, “A New Optimal Scheme for Solving Nonlinear Heat Conduction Problems,” Comput. Model. Eng. Sci., vol. 88, no. 4, pp. 269-292, 2012. https://doi.org/10.3970/cmes.2012.088.269



cc Copyright © 2012 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1496

    View

  • 921

    Download

  • 0

    Like

Related articles

Share Link