Table of Content

Open Access

ARTICLE

An Application of Genetic Algorithms and the Method of Fundamental Solutions to Simulate Cathodic Protection Systems

W.J. Santos1 , J.A.F. Santiago1, J.C.F Telles1
1 PEC, COPPE/UFRJ, RJ, Brazil.

Computer Modeling in Engineering & Sciences 2012, 87(1), 23-40. https://doi.org/10.3970/cmes.2012.087.023

Abstract

The aim of this paper is to present numerical simulations of Cathodic Protection (CP) Systems using a Genetic Algorithm (GA) and the Method of Fundamental Solutions (MFS). MFS is used to obtain the solution of the associated homogeneous equation with the non-homogeneous equation subject to nonlinear boundary conditions defined as polarization curves. The adopted GA minimizes a nonlinear error function, whose design variables are the coefficients of the linear superposition of fundamental solutions and the positions of the source points, located outside the problem domain. In this work, the anodes added to the CP system are considered as point sources and therefore the integral that represents the particular solution can be obtained analytically. The results presented here include a comparison with a direct boundary element (BEM) solution procedure. Simulations are performed considering finite and infinite regions in R2. For external problems a constant was added to the fundamental solution to impose the conservation of current between the anodes and cathodes of the problem.

Keywords

Optimization, MFS, BEM.

Cite This Article

Santos, W., Telles, J. (2012). An Application of Genetic Algorithms and the Method of Fundamental Solutions to Simulate Cathodic Protection Systems. CMES-Computer Modeling in Engineering & Sciences, 87(1), 23–40.



This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 803

    View

  • 603

    Download

  • 0

    Like

Share Link

WeChat scan