Table of Content

Open Access iconOpen Access

ARTICLE

A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation

Ali Shokri1, Mehdi Dehghan1

Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, Iran.
E-mail addresses: shokri.a@gmail.com (A. Shokri), mdehghan@aut.ac.ir; mdehghan.aut@gmail.com (M. Dehghan).

Computer Modeling in Engineering & Sciences 2012, 84(4), 333-358. https://doi.org/10.3970/cmes.2012.084.333

Abstract

The Ginzburg-Landau equation has been used as a mathematical model for various pattern formation systems in mechanics, physics and chemistry. In this paper, we study the complex Ginzburg-Landau equation in two spatial dimensions with periodical boundary conditions. The method numerically approximates the solution by collocation method based on radial basis functions (RBFs). To improve the numerical results we use a predictor-corrector scheme. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the accuracy and efficiency of the presented method.

Keywords


Cite This Article

APA Style
Shokri, A., Dehghan, M. (2012). A meshless method using radial basis functions for the numerical solution of two-dimensional complex ginzburg-landau equation. Computer Modeling in Engineering & Sciences, 84(4), 333-358. https://doi.org/10.3970/cmes.2012.084.333
Vancouver Style
Shokri A, Dehghan M. A meshless method using radial basis functions for the numerical solution of two-dimensional complex ginzburg-landau equation. Comput Model Eng Sci. 2012;84(4):333-358 https://doi.org/10.3970/cmes.2012.084.333
IEEE Style
A. Shokri and M. Dehghan, “A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation,” Comput. Model. Eng. Sci., vol. 84, no. 4, pp. 333-358, 2012. https://doi.org/10.3970/cmes.2012.084.333



cc Copyright © 2012 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1389

    View

  • 1332

    Download

  • 0

    Like

Share Link