A Spectrally Accurate Quadrature for 3-D Boundary Integrals
Gregory Baker1, Huaijian Zhang1
CMES-Computer Modeling in Engineering & Sciences, Vol.80, No.3&4, pp. 219-232, 2011, DOI:10.3970/cmes.2011.080.219
Abstract Boundary integral methods have proved very useful in the simulation of free surface motion, in part, because only information at the surface is necessary to track its motion. However, the velocity of the surface must be calculated quite accurately, and the error must be reasonably smooth, otherwise the surface buckles as numerical inaccuracies grow, leading to a failure in the simulation. For two-dimensional motion, the surface is just a curve and the boundary integrals are simple poles that may be removed, allowing spectrally accurate numerical integration. For three-dimensional motion, the singularity in the integrand, although More >