Development of Large Strain Shell Elements for Woven Fabrics with Application to Clothing Pressure Distribution Problem
M. Tanaka1,2, H. Noguchi1, M. Fujikawa3,4, M. Sato3, S. Oi3, T. Kobayashi3, K. Furuichi5, S. Ishimaru5, C. Nonomura5
CMES-Computer Modeling in Engineering & Sciences, Vol.62, No.3, pp. 265-290, 2010, DOI:10.3970/cmes.2010.062.265
Abstract This paper describes the development of a proper constitutive model of woven fabrics and its implementation in nonlinear finite shell elements in order to simulate the large deformation behavior of cloth. This work currently focuses on a macroscopic continuum constitutive model that is capable of capturing the realistic mechanical behavior of cloth that is characterized by two families of yarns, i.e., warp and weft. In this study, two strategies are considered. One is a rebar layer model and the other is a polyconvex anisotropic hyperelastic material model. The latter avoids non-physical behavior and can consider More >