Home / Journals / CMES / Vol.58, No.1, 2010
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    New Interpretation to Variational Iteration Method: Convolution Iteration Method Based on Duhamel's Principle for Dynamic System Analysis

    Yunhua Li1,2, Yunze Li3, Chieh-Li Chen4, Cha’o-Kuang Chen5
    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 1-14, 2010, DOI:10.3970/cmes.2010.058.001
    Abstract Addressing the identification problem of the general Lagrange multiplier in the He's variational iteration method, this paper proposes a new kind of method based on Duhamel's principle for the dynamic system response analysis. In this method, we have constructed an analytical iteration formula in terms of the convolution for the residual error at the nth iteration, and have given a new interpretation to He's variational iteration method. The analysis illustrates that the computational result of this method is equal to that of He's variational iteration method on the assumption of considering the impulse response of More >

  • Open AccessOpen Access

    ARTICLE

    Convergence of Electromagnetic Problems Modelled by Discrete Geometric Approach

    Lorenzo Codecasa1, Francesco Trevisan2
    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 15-44, 2010, DOI:10.3970/cmes.2010.058.015
    Abstract This paper starts from the spatial discretization of an electromagnetic problem over pairs of oriented grids, one dual of the other, according to the so called Discrete Geometric Approach(DGA) to computational electromagnetism; the Cell Method or the Finite Integration Technique are examples of such an approach. The core of the work is providing for the first time a convergence analysis when the discrete counter-parts of constitutive relations are computed by means of an energetic framework. More >

  • Open AccessOpen Access

    ARTICLE

    BEM Solutions for 2D and 3D Dynamic Problems in Mindlin's Strain Gradient Theory of Elasticity

    A. Papacharalampopoulos2, G. F. Karlis2, A. Charalambopoulos3, D. Polyzos4
    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 45-74, 2010, DOI:10.3970/cmes.2010.058.045
    Abstract A Boundary Element Method (BEM) for solving two (2D) and three dimensional (3D) dynamic problems in materials with microstructural effects is presented. The analysis is performed in the frequency domain and in the context of Mindlin's Form II gradient elastic theory. The fundamental solution of the differential equation of motion is explicitly derived for both 2D and 3D problems. The integral representation of the problem, consisting of two boundary integral equations, one for displacements and the other for its normal derivative is exploited for the proposed BEM formulation. The global boundary of the analyzed domain More >

  • Open AccessOpen Access

    ARTICLE

    Locking-free Thick-Thin Rod/Beam Element for Large Deformation Analyses of Space-Frame Structures, Based on the Reissner Variational Principle and A Von Karman Type Nonlinear Theory

    Y.C. Cai1,2, J.K. Paik3, S.N. Atluri4
    CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 75-108, 2010, DOI:10.3970/cmes.2010.058.075
    Abstract This paper presents a new shear flexible beam/rod element for large deformation analyses of space-frame structures comprising of thin or thick members, based on the Reissner variational principle and a von Karman type nonlinear theory of deformation in the co-rotational reference frame of the present beam element. The C0continuous trial functions for transverse rotations in two independent directions are used over each element, to derive an explicit expression for the (16x16)symmetrictangent stiffness matrix of the beam element in the co-rotational reference frame. When compared to the primal approach wherein C1continuous trial functions for transverse displacements… More >

Per Page:

Share Link