Home / Journals / CMES / Vol.56, No.3, 2010
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Error Analysis of Various Basis Functions Used in BEM Solution of Acoustic Scattering

    B. Chandrasekhar1
    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 211-230, 2010, DOI:10.3970/cmes.2010.056.211
    Abstract In this work, various basis functions used in the Method of Moments or Boundary Element (MoM/BEM) solution of acoustic scattering problems are compared with each other for their performance. Single layer formulation of the rigid bodies is considered in comparison of the solutions. Geometry of a scatterer is descritized using triangular patch modeling and basis functions are defined on triangular patches, edges and nodes for three different solutions. Far field scattering cross sections for different frequencies of incident acoustic wave are compared with the closed form solutions. Also, the errors of the solutions using these More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Prediction of Young's and Shear Moduli of Carbon Nanotube Composites Incorporating Nanoscale and Interfacial Effects

    G.I. Giannopoulos1, S.K. Georgantzinos2, D.E. Katsareas2, N.K. Anifantis2
    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 231-248, 2010, DOI:10.3970/cmes.2010.056.231
    Abstract A hybrid finite element formulation, combining nanoscopic and macroscopic considerations is proposed, for the prediction of the elastic mechanical properties of single walled carbon nanotube (SWCNT)-based composites. The nanotubes are modeled according to the molecular mechanics theory via the use of spring elements, while the matrix is modeled as a continuum medium. A new formulation concerning the load transfer between the nanotubes and matrix is proposed. The interactions between the two phases are implemented by utilizing appropriate stiffness variations describing a heterogeneous interfacial region. A periodic distribution and orientation of the SWCNTs is considered. Thereupon, More >

  • Open AccessOpen Access

    ARTICLE

    Coupled Thermo-Mechanical Analysis of One-Layered and Multilayered Isotropic and Composite Shells

    S. Brischetto1, E. Carrera2
    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 249-302, 2010, DOI:10.3970/cmes.2010.056.249
    Abstract This work considers the fully coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells. The temperature is assumed a primary variable as the displacement; it is therefore directly obtained from the model and this feature permits the temperature field to be evaluated through the thickness direction. Three problems are analyzed: - static analysis of shells with imposed temperature on the external surfaces; - static analysis of shells subjected to a mechanical load, with the possibility of considering the temperature field effects; - a free vibration problem, with the evaluation of the temperature field… More >

  • Open AccessOpen Access

    ARTICLE

    An Advanced Implicit Meshless Approach for the Non-linear Anomalous Subdiffusion Equation

    Y. T. Gu1, P. Zhuang2, F. Liu3
    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 303-334, 2010, DOI:10.3970/cmes.2010.056.303
    Abstract Recently, the numerical modelling and simulation for anomalous subdiffusion equation (ASDE), which is a type of fractional partial differential equation(FPDE) and has been found with widely applications in modern engineering and sciences, are attracting more and more attentions. The current dominant numerical method for modelling ASDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of the non-linear ASDE. The discrete system of equations is obtained by… More >

Per Page:

Share Link