Table of Content

Open Access iconOpen Access

ARTICLE

A fast Monte-Carlo Solver for Phonon Transport in Nanostructured Semiconductors

Mei-Jiau Huang1, Tung-Chun Tsai1, Liang-Chun Liu1,2, Ming-shan Jeng2, Chang-Chung Yang2

Mechanical Engineering Department, National Taiwan University, Taipei, Taiwan
Energy & Environment Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan

Computer Modeling in Engineering & Sciences 2009, 42(2), 107-130. https://doi.org/10.3970/cmes.2009.042.107

Abstract

We develop a Monte-Carlo simulator for phonon transport in nanostructured semiconductors, which solves the phonon Boltzmann transport equation under the gray medium approximation. Proper physical models for the phonon transmission/reflection at an interface between two different materials and proper numerical boundary conditions are designed and implemented carefully. Most of all, we take advantage of geometric symmetry that exists in a system to reduce the computational amount. The validity and accuracy of the proposed MC solver was successfully verified via a 1D transient conduction problem and the cross-plane (1D) and in-plane (2D) phonon transport problems associated with Si/Ge superlattice thin films.

Keywords


Cite This Article

APA Style
Huang, M., Tsai, T., Liu, L., Jeng, M., Yang, C. (2009). A fast monte-carlo solver for phonon transport in nanostructured semiconductors. Computer Modeling in Engineering & Sciences, 42(2), 107-130. https://doi.org/10.3970/cmes.2009.042.107
Vancouver Style
Huang M, Tsai T, Liu L, Jeng M, Yang C. A fast monte-carlo solver for phonon transport in nanostructured semiconductors. Comput Model Eng Sci. 2009;42(2):107-130 https://doi.org/10.3970/cmes.2009.042.107
IEEE Style
M. Huang, T. Tsai, L. Liu, M. Jeng, and C. Yang, “A fast Monte-Carlo Solver for Phonon Transport in Nanostructured Semiconductors,” Comput. Model. Eng. Sci., vol. 42, no. 2, pp. 107-130, 2009. https://doi.org/10.3970/cmes.2009.042.107



cc Copyright © 2009 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1694

    View

  • 1226

    Download

  • 0

    Like

Share Link