Home / Journals / CMES / Vol.39, No.3, 2009
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Algebraic Formulation of Elastostatics: the Cell Method

    E. Tonti1, F. Zarantonello1
    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.3, pp. 201-236, 2009, DOI:10.3970/cmes.2009.039.201
    Abstract The theory of elasticity is usually formulated using differential calculus. We will show that it is possible to give an algebraic or discrete or finite formulation, by starting directly from experimental laws, i.e. by avoiding any discretization process of the differential equations. This direct formulation can be immediately used for numerical solution in elasticity problems and, from a theoretical point of view, it shows some interesting features which are hidden in the differential formulation or are not considered at all. More >

  • Open AccessOpen Access

    ARTICLE

    Intensity of stress singularity at a vertex and along the free edges of the interface in 3D-dissimilar material joints using 3D-enriched FEM

    W. Attaporn1, H. Koguchi2
    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.3, pp. 237-262, 2009, DOI:10.3970/cmes.2009.039.237
    Abstract In the present study, a stress singularity field along free edges meeting at a corner in a three-dimensional joint structure is investigated. The order of stress singularity is determined using an eigen analysis based on a finite element method. Intensities of stress singularity not only at the corner but also along the free edge of interface are determined directly without any post-processing by a new FEM formulation referred to as a three-dimensional enriched FEM. Result in the present analysis is also compared with that in another numerical method. It was slightly larger than the intensity More >

  • Open AccessOpen Access

    ARTICLE

    A Discontinuous Galerkin Finite Element Method for Heat Conduction Problems with Local High Gradient and Thermal Contact Resistance

    Donghuan Liu1, Xiaoping Zheng1,2, Yinghua Liu1
    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.3, pp. 263-300, 2009, DOI:10.3970/cmes.2009.039.263
    Abstract A discontinuous Galerkin (DG) finite element method for the heat conduction problems with local high gradient and thermal contact resistance is presented. The DG formulation is constructed by employing the stabilization term and the Bassi-Rebay numerical flux term. The stabilization term is defined by a penalization of the temperature jump at the interface. By eliminating the penalization term of the temperature jump in the region of local high gradient and imperfect contact interfaces, the present DG method is applied to solve problems involving local high gradient and thermal contact resistance where the numerical flux is… More >

  • Open AccessOpen Access

    ARTICLE

    Stability Analysis for Fractional Differential Equations and Their Applications in the Models of HIV-1 Infection

    Chunhai Kou1, Ye Yan2, Jian Liu1
    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.3, pp. 301-318, 2009, DOI:10.3970/cmes.2009.039.301
    Abstract In the paper, stability for fractional order differential equations is studied. Then the result obtained is applied to analyse the stability of equilibrium for the model of HIV. More >

Per Page:

Share Link