Table of Content

Open Access iconOpen Access

ARTICLE

A Highly Accurate MCTM for Inverse Cauchy Problems of Laplace Equation in Arbitrary Plane Domains

Chein-Shan Liu1

Department of Mechanical and Mechatronic Engineering, Department of Harbor and River Engineering, Taiwan Ocean University, Keelung, Taiwan. E-mail: csliu@mail.ntou.edu.tw.

Computer Modeling in Engineering & Sciences 2008, 35(2), 91-112. https://doi.org/10.3970/cmes.2008.035.091

Abstract

We consider the inverse Cauchy problems for Laplace equation in simply and doubly connected plane domains by recoverning the unknown boundary value on an inaccessible part of a noncircular contour from overspecified data. A modified Trefftz method is used directly to solve those problems with a simple collocation technique to determine unknown coefficients, which is named a modified collocation Trefftz method (MCTM). Because the condition number is small for the MCTM, we can apply it to numerically solve the inverse Cauchy problems without needing of an extra regularization, as that used in the solutions of direct problems for Laplace equation. So, the computational cost of MCTM is very saving. Numerical examples show the effectiveness of the new method in providing an excellent estimate of unknown boundary data, even by subjecting the given data to a large noise.

Keywords


Cite This Article

APA Style
Liu, C. (2008). A highly accurate MCTM for inverse cauchy problems of laplace equation in arbitrary plane domains. Computer Modeling in Engineering & Sciences, 35(2), 91-112. https://doi.org/10.3970/cmes.2008.035.091
Vancouver Style
Liu C. A highly accurate MCTM for inverse cauchy problems of laplace equation in arbitrary plane domains. Comput Model Eng Sci. 2008;35(2):91-112 https://doi.org/10.3970/cmes.2008.035.091
IEEE Style
C. Liu, “A Highly Accurate MCTM for Inverse Cauchy Problems of Laplace Equation in Arbitrary Plane Domains,” Comput. Model. Eng. Sci., vol. 35, no. 2, pp. 91-112, 2008. https://doi.org/10.3970/cmes.2008.035.091



cc Copyright © 2008 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1403

    View

  • 1179

    Download

  • 0

    Like

Share Link