Open Access
ARTICLE
The Method of Fundamental Solutions for Inverse Problems Associated with the Steady-State Heat Conduction in the Presence of Sources
Institute of Solid Mechanics, Romanian Academy, 15 Constantin Mille, Sector 1, PO Box 1-863, RO-010141 Bucharest, Romania. E-mail: marin.liviu@gmail.com
Computer Modeling in Engineering & Sciences 2008, 30(2), 99-122. https://doi.org/10.3970/cmes.2008.030.099
Abstract
The application of the method of fundamental solutions (MFS) to inverse boundary value problems associated with the steady-state heat conduction in isotropic media in the presence of sources, i.e. the Poisson equation, is investigated in this paper. Based on the approach of Alves and Chen (2005), these problems are solved in two steps, namely by finding first an approximate particular solution of the Poisson equation and then the numerical solution of the resulting inverse boundary value problem for the Laplace equation. The resulting MFS discretised system of equations is ill-conditioned and hence it is solved by employing the singular value decomposition (SVD), whilst the choice of the optimal truncation number, which is the regularization parameter in this case, is based on the L-curve criterion. Three examples in smooth and piecewise smooth, simply and doubly connected, two-dimensional domains are considered and the convergence and stability of the proposed numerical method are analysed, based on the numerical experiments undertaken.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.