Home / Journals / CMES / Vol.1, No.3, 2000
Table of Content
  • Open AccessOpen Access

    ARTICLE

    A Boundary-only Solution to Dynamic Analysis of Non-homogeneous Elastic Membranes

    J.T. Katsikadelis1, M.S. Nerantzaki1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 1-9, 2000, DOI:10.3970/cmes.2000.001.303
    Abstract A boundary-only method is presented for the solution of the vibration problem of non-homogeneous membranes. Both free and forced vibrations are considered. The presented method is based on the Analog Equation Method (AEM). According to this method the second order partial differential equation with variable coefficients of hyperbolic type, which governs the dynamic response of the membrane, is substituted by a Poisson's equation describing a quasi-static problem for the homogeneous membrane subjected to a fictitious time dependent load. The fictitious load is established using BEM. Several numerical examples are presented which illustrate the efficiency and the accuracy of the method. More >

  • Open AccessOpen Access

    ARTICLE

    Arbitrary Placement of Secondary Nodes, and Error Control, in the Meshless Local Petrov-Galerkin (MLPG) Method

    H.-G. Kim, S. N. Atluri1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 11-32, 2000, DOI:10.3970/cmes.2000.001.313
    Abstract The truly meshless local Petrov-Galerkin (MLPG) method holds a great promise in solving boundary value problems, using a local symmetric weak form as a natural approach. In the present paper, in the context of MLPG and the meshless interpolation of a moving least squares (MLS) type, a method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The sub-domains for the shape functions in the MLS approximation are… More >

  • Open AccessOpen Access

    ARTICLE

    Dynamics of Machinery 2D Elastic Casing, with Central Hole, Subject to an In-Plane Deflection-Dependent Rotating Load

    F. M. A. El-Saeidy1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 33-42, 2000, DOI:10.3970/cmes.2000.001.335
    Abstract In rotating radial ball bearings supported on elastic casings with the bearing outer ring lightly fitted into the housing, the force due to the ball elastic contact is indeed a rotating load rolling over the housing. For accurate estimation of the dynamic deformations of the casing annulus (hole), which in turn affect the bearing tolerances and hence the magnitudes of the generated forces, effect of the load rotation (motion) should be considered. Considering the integral casing and the outer ring to be a plate, an isoparametric plane stress finite-element (FE) based analytical procedure is presented for the dynamic analysis of… More >

  • Open AccessOpen Access

    ARTICLE

    New insights in nonlinear static stability analysis by the FEM

    B. Pichler1, H.A. Mang1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 43-55, 2000, DOI:10.3970/cmes.2000.001.345
    Abstract In order to avoid a fully nonlinear analysis to obtain stability limits on nonlinear load-displacement paths, linear eigenvalue problems may be used to compute estimates of such limits. In this paper an asymptotic approach for assessment of the errors resulting from such estimates is presented. Based on the consistent linearization of the geometrically nonlinear static stability criterion – the so-called consistently linearized eigenvalue problem – higher-order estimation functions can be calculated. They are obtained from a scalar post-calculation performed after the solution of the eigenproblem. Different extensions of these higher-order estimation functions are presented. An ab initio criterion for the… More >

  • Open AccessOpen Access

    ARTICLE

    Non-Isothermal Three-Dimensional Developments and Process Modeling of Composites: Flow/Thermal/Cure Formulations and Experimental Validations

    N. D. Ngo, K. K. Tamma1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 57-72, 2000, DOI:10.3970/cmes.2000.001.359
    Abstract In the process modeling via Resin Transfer Molding (RTM) for thick composite sections, multi-layer preforms with varying thermophysical characteristics across the different layers, or for geometrically complex mold geometries with varying thicknesses, the assumption of a thin shell-like geometry is no longer valid. The flow in the through thickness direction is no longer negligible and current practices of treating the continuously moving flow front as two-dimensional and the temperature and cure as three-dimensional are not representative of the underlying physics. In view of these considerations, in the present study, the focus is on the non-isothermal process modeling of composites employing… More >

  • Open AccessOpen Access

    ARTICLE

    A Boundary Element Model for Underwater Acoustics in Shallow Water

    J.A.F. Santiago1, L.C. Wrobel2
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 73-80, 2000, DOI:10.3970/cmes.2000.001.375
    Abstract This work presents a boundary element formulation for two-dimensional acoustic wave propagation in shallow water. It is assumed that the velocity of sound in water is constant, the free surface is horizontal, and the seabed is irregular. The boundary conditions of the problem are that the sea bottom is rigid and the free surface pressure is atmospheric.
    For regions of constant depth, fundamental solutions in the form of infinite series can be employed in order to avoid the discretisation of both the free surface and bottom boundaries. When the seabed topography is irregular, it is necessary to divide the… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Variational Approach for Rotor-Propeller Aerodynamics in Axial Flight

    F. Simonetti1, R. M. Ardito Marretta2
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 81-90, 2000, DOI:10.3970/cmes.2000.001.383
    Abstract Advanced propellers are being developed to improve the performance and fuel economy of future transport aircraft. To study them, various aerodynamic prediction models and systems (from theory to experiment) have been developed via several approaches (Free Wake Analysis, helicoidal source methods, scale model tests). This study focuses on the development of an efficient numerical method to predict the behaviour of rotor or propeller in forward flight. Based on a variational approach, the present numerical technique allows a significant reduction of computer resources used in the calculation of instantaneous velocities to determine the wake geometry and the three-dimensional vortex flow streaming… More >

  • Open AccessOpen Access

    ARTICLE

    Fracture Mechanics Analysis in 2-D Anisotropic Thermoelasticity Using BEM

    Y.C. Shiah1, C.L. Tan1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 91-99, 2000, DOI:10.3970/cmes.2000.001.393
    Abstract In the direct formulation of the boundary element method (BEM), a volume integral arises in the resulting integral equation if thermal effects are present. The steps to transform this volume integral into boundary ones in an exact analytical manner are reviewed in this paper for two- dimensional anisotropic thermoelasticity. The general applicability of the BEM algorithm for fracture mechanics applications is demonstrated by three crack problems with slanted cracks. The numerical results of the stress intensity factors are presented and compared with those obtained using superposition. More >

  • Open AccessOpen Access

    ARTICLE

    An Iterative Boundary Element Method for the Solution of a Cauchy Steady State Heat Conduction Problem

    N.S. Mera, L. Elliott, D.B. Ingham, D. Lesnic1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 101-106, 2000, DOI:10.3970/cmes.2000.001.403
    Abstract In this paper the iterative algorithm proposed by [Kozlov and Maz'ya (1990)] for the backward heat conduction problem is extended in order to solve the Cauchy steady state heat conduction problem and the accuracy, convergence and stability of the numerical algorithm are investigated. The numerical results which are obtained confirm that this new iterative BEM procedure is accurate, convergent and stable with respect to increasing the number of boundary elements and decreasing the amount of noise which is added into the input data. More >

  • Open AccessOpen Access

    ARTICLE

    An Inverse Boundary Element Method for Determining the Hydraulic Conductivity in Anisotropic Rocks

    R. Mustata1, S. D. Harris2, L. Elliott1, D. Lesnic1, D. B. Ingham1
    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 107-116, 2000, DOI:10.3970/cmes.2000.001.409
    Abstract An inverse boundary element method is developed to characterise the components of the hydraulic conductivity tensor K of anisotropic materials. Surface measurements at exposed boundaries serve as additional input to a Genetic Algorithm (GA) using a modified least squares functional that minimises the difference between observed and BEM-predicted boundary pressure and/or hydraulic flux measurements under current hydraulic conductivity tensor component estimates. More >

Per Page:

Share Link

WeChat scan