Table of Content

Open Access iconOpen Access

ARTICLE

Meshless Local Petrov-Galerkin (MLPG) Mixed Finite Difference Method for Solid Mechanics

S. N. Atluri1, H. T. Liu2, Z. D. Han2

Center for Aerospace Research & Education, University of California, Irvine, CA
Knowledge Systems Research, LLC, GA

Computer Modeling in Engineering & Sciences 2006, 15(1), 1-16. https://doi.org/10.3970/cmes.2006.015.001

Abstract

The Finite Difference Method (FDM), within the framework of the Meshless Local Petrov-Galerkin (MLPG) approach, is proposed in this paper for solving solid mechanics problems. A "mixed'' interpolation scheme is adopted in the present implementation: the displacements, displacement gradients, and stresses are interpolated independently using identical MLS shape functions. The system of algebraic equations for the problem is obtained by enforcing the momentum balance laws at the nodal points. The divergence of the stress tensor is established through the generalized finite difference method, using the scattered nodal values and a truncated Taylor expansion. The traction boundary conditions are imposed in the stress equations directly, using a local coordinate system. Numerical examples show that the proposed MLPG mixed finite difference method is both accurate and efficient, and stable.

Keywords


Cite This Article

APA Style
Atluri, S.N., Liu, H.T., Han, Z.D. (2006). Meshless local petrov-galerkin (MLPG) mixed finite difference method for solid mechanics. Computer Modeling in Engineering & Sciences, 15(1), 1-16. https://doi.org/10.3970/cmes.2006.015.001
Vancouver Style
Atluri SN, Liu HT, Han ZD. Meshless local petrov-galerkin (MLPG) mixed finite difference method for solid mechanics. Comput Model Eng Sci. 2006;15(1):1-16 https://doi.org/10.3970/cmes.2006.015.001
IEEE Style
S.N. Atluri, H.T. Liu, and Z.D. Han, “Meshless Local Petrov-Galerkin (MLPG) Mixed Finite Difference Method for Solid Mechanics,” Comput. Model. Eng. Sci., vol. 15, no. 1, pp. 1-16, 2006. https://doi.org/10.3970/cmes.2006.015.001



cc Copyright © 2006 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1171

    View

  • 868

    Download

  • 0

    Like

Share Link