Home / Journals / CMES / Vol.14, No.1, 2006
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Modelling Fruit Microstructure Using Novel Ellipse Tessellation Algorithm

    H.K. Mebatsion1, P. Verboven1, Q. T. Ho1, F. Mendoza1, B. E. Verlinden2, T. A. Nguyen1, B. M. Nicolaï1,2
    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 1-14, 2006, DOI:10.3970/cmes.2006.014.001
    Abstract Modeling plant microstructure is of great interest to food engineers to study and explain material properties related to mass transfer and mechanical deformation. In this paper, a novel ellipse tessellation algorithm to generate a 2D geometrical model of apple tissue is presented. Ellipses were used to quantify the orientation and aspect ratio of cells on a microscopic image. The cell areas and centroids of each cell were also determined by means of a numerical procedure. These characteristic quantities were then described by means of probability density functions. The model tissue geometry was generated from the… More >

  • Open AccessOpen Access

    ARTICLE

    Responses of Piezoelectric, Transversely Isotropic, Functionally Graded, and Multilayered Half Spaces to Uniform Circular Surface Loadings

    F. Han1, E. Pan1, A.K. Roy2, Z.Q. Yue3
    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 15-30, 2006, DOI:10.3970/cmes.2006.014.015
    Abstract In this paper, an analytical solution is presented to study the response of piezoelectric, transversely isotropic, functionally graded, and multilayered half spaces to uniform circular surface loadings (pressure or negative electric charge). The inhomogeneous material is exponentially graded in the vertical direction and can have multiple discrete layers. The propagator matrix method and cylindrical system of vector functions are used to first derive the solution in the transformed domain. In order to find the responses in the physical-domain, which are expressed in one-dimensional infinite integrals of the Bessel function products, we introduced and adopted an… More >

  • Open AccessOpen Access

    ARTICLE

    Optimal Tetrahedralization for Small Polyhedron: A New Local Transformation Strategy for 3-D Mesh Generation and Mesh Improvement

    Liu Jianfei1,2, Sun Shuli1,3, Wang Dachuan1
    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 31-44, 2006, DOI:10.3970/cmes.2006.014.031
    Abstract Local transformation, or topological re-connection, is one of effective procedures of mesh improvement method, especially in three-dimensional situation. The commonly used local transformations for tetrahedral mesh involve changing in mesh topology (i.e. node-element connectivity relationship) within a relatively small region composed of several tetrahedra, such as 2-3 flip, 3-2 flip, 2-2 flip, 4-4 flip, etc. Although these local transformations are easy to implement and effective in removing poorly-shaped tetrahedra, it is still possible to improve the quality of mesh further by expanding the space of transformation region. In this paper, the concept of optimal tetrahedralization forMore >

  • Open AccessOpen Access

    ARTICLE

    A Parallel Multi-block Method for the Unsteady Vorticity-velocity Equations

    A. Grimaldi1, G. Pascazio2, M. Napolitano3
    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 45-56, 2006, DOI:10.3970/cmes.2006.014.045
    Abstract This paper provides a numerical method for solving two- and three-dimensional unsteady incompressible flows. The vorticity-velocity formulation of the Navier--Stokes equations is considered, employing the vorticity transport equation and a second-order Poisson equation for the velocity. Second-order-accurate centred finite differences on a staggered grid are used for the space discretization. The vorticity equation is discretized in time using a fully implicit three-level scheme. At each physical time level, a dual-time stepping technique is used to solve the coupled system of non linear algebraic equations by various efficient relaxation schemes. Steady flows are computed by dropping More >

  • Open AccessOpen Access

    ARTICLE

    Parallel iterative procedures for a computational electromagnetic modeling based on a nonconforming mixed finite element method

    Taeyoung Ha1, Sangwon Seo2, Dongwoo Sheen3
    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 57-76, 2006, DOI:10.3970/cmes.2006.014.057
    Abstract We present nonoverlapping domain decomposition methods for the approximation of both electromagnetic fields in a three-dimensional bounded domain satisfying absorbing boundary conditions. A Seidel-type domain decomposition iterative method is introduced based on a hybridization of a nonconforming mixed finite element method. Convergence results for the numerical procedure are proved by introducing a suitable pseudo-energy. The spectral radius of the iterative procedure is estimated and a method for choosing an optimal matching parameter is given. A red-black Seidel-type method which is readily parallelizable is also introduced and analyzed. Numerical experiments confirm that the presented algorithms are faster than More >

Per Page:

Share Link