Open Access iconOpen Access

ARTICLE

A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties

by Rajan Aravind1,2, Sundararajan Natarajan1, Krishnankutty Jayakumar2, Ratna Kumar Annabattula1,*

1 Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
2 Vikram Sarabhai Space Centre, Thiruvananthapuram, 695022, India

* Corresponding Author: Ratna Kumar Annabattula. Email: email

Computer Modeling in Engineering & Sciences 2024, 141(2), 997-1032. https://doi.org/10.32604/cmes.2024.053047

Abstract

Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications. This is all the more important when elements composed of brittle materials are exposed to dynamic environments, resulting in catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading. Crack growth is modelled using a phase-field approach within a finite element framework. For modelling fatigue, fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function. Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties. Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method. This proposed approach can accurately predict results typically obtained through or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs. The independent random variables’ sensitivity to the system response is determined using Sobol’ indices. The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace, nuclear and biomedical engineering. The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.

Keywords


Cite This Article

APA Style
Aravind, R., Natarajan, S., Jayakumar, K., Annabattula, R.K. (2024). A non-intrusive stochastic phase-field for fatigue fracture in brittle materials with uncertainty in geometry and material properties. Computer Modeling in Engineering & Sciences, 141(2), 997-1032. https://doi.org/10.32604/cmes.2024.053047
Vancouver Style
Aravind R, Natarajan S, Jayakumar K, Annabattula RK. A non-intrusive stochastic phase-field for fatigue fracture in brittle materials with uncertainty in geometry and material properties. Comput Model Eng Sci. 2024;141(2):997-1032 https://doi.org/10.32604/cmes.2024.053047
IEEE Style
R. Aravind, S. Natarajan, K. Jayakumar, and R. K. Annabattula, “A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties,” Comput. Model. Eng. Sci., vol. 141, no. 2, pp. 997-1032, 2024. https://doi.org/10.32604/cmes.2024.053047



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 745

    View

  • 278

    Download

  • 0

    Like

Share Link