Open Access iconOpen Access

ARTICLE

crossmark

Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete

Mohamed Abdel-Mongy1, Mudassir Iqbal2, M. Farag3, Ahmed. M. Yosri1,*, Fahad Alsharari1, Saif Eldeen A. S. Yousef4

1 Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia
2 Department of Civil Engineering, University of Engineering and Technology, Peshawar, 54890, Pakistan
3 Civil Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, 11884, Egypt
4 Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81528, Egypt

* Corresponding Author: Ahmed. M. Yosri. Email: email

(This article belongs to the Special Issue: Recent Advances in Computational Methods for Performance Assessment of Engineering Structures and Materials against Dynamic Loadings)

Computer Modeling in Engineering & Sciences 2024, 141(1), 525-543. https://doi.org/10.32604/cmes.2024.052505

Abstract

Alkali-activated materials/geopolymer (AAMs), due to their low carbon emission content, have been the focus of recent studies on ecological concrete. In terms of performance, fly ash and slag are preferred materials for precursors for developing a one-part geopolymer. However, determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported. Therefore, in this study, machine learning methods such as artificial neural networks (ANN) and gene expression programming (GEP) models were developed using MATLAB and GeneXprotools, respectively, for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer. The database for this study contains 171 points extracted from literature with input parameters: fly ash concentration, slag content, calcium hydroxide content, sodium oxide dose, water binder ratio, and curing temperature. The performance of the two models was evaluated under various statistical indices, namely correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). In terms of the strength prediction efficacy of a one-part geopolymer, ANN outperformed GEP. Sensitivity and parametric analysis were also performed to identify the significant contributor to strength. According to a sensitivity analysis, the activator and slag contents had the most effects on the compressive strength at 28 days. The water binder ratio was shown to be directly connected to activator percentage, slag percentage, and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature.

Keywords


Cite This Article

APA Style
Abdel-Mongy, M., Iqbal, M., Farag, M., Yosri, A.M., Alsharari, F. et al. (2024). Artificial intelligence prediction of one-part geopolymer compressive strength for sustainable concrete. Computer Modeling in Engineering & Sciences, 141(1), 525-543. https://doi.org/10.32604/cmes.2024.052505
Vancouver Style
Abdel-Mongy M, Iqbal M, Farag M, Yosri AM, Alsharari F, Yousef SEAS. Artificial intelligence prediction of one-part geopolymer compressive strength for sustainable concrete. Comput Model Eng Sci. 2024;141(1):525-543 https://doi.org/10.32604/cmes.2024.052505
IEEE Style
M. Abdel-Mongy, M. Iqbal, M. Farag, A.M. Yosri, F. Alsharari, and S.E.A.S. Yousef "Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete," Comput. Model. Eng. Sci., vol. 141, no. 1, pp. 525-543. 2024. https://doi.org/10.32604/cmes.2024.052505



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 301

    View

  • 107

    Download

  • 0

    Like

Share Link