Open Access iconOpen Access

ARTICLE

crossmark

Enhancing Ulcerative Colitis Diagnosis: A Multi-Level Classification Approach with Deep Learning

Hasan J. Alyamani*

Department of Information Systems, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

* Corresponding Author: Hasan J. Alyamani. Email: email

(This article belongs to the Special Issue: Intelligent Medical Decision Support Systems: Methods and Applications)

Computer Modeling in Engineering & Sciences 2024, 140(1), 1129-1142. https://doi.org/10.32604/cmes.2024.047756

Abstract

The evaluation of disease severity through endoscopy is pivotal in managing patients with ulcerative colitis, a condition with significant clinical implications. However, endoscopic assessment is susceptible to inherent variations, both within and between observers, compromising the reliability of individual evaluations. This study addresses this challenge by harnessing deep learning to develop a robust model capable of discerning discrete levels of endoscopic disease severity. To initiate this endeavor, a multi-faceted approach is embarked upon. The dataset is meticulously preprocessed, enhancing the quality and discriminative features of the images through contrast limited adaptive histogram equalization (CLAHE). A diverse array of data augmentation techniques, encompassing various geometric transformations, is leveraged to fortify the dataset’s diversity and facilitate effective feature extraction. A fundamental aspect of the approach involves the strategic incorporation of transfer learning principles, harnessing a modified ResNet-50 architecture. This augmentation, informed by domain expertise, contributed significantly to enhancing the model’s classification performance. The outcome of this research endeavor yielded a highly promising model, demonstrating an accuracy rate of 86.85%, coupled with a recall rate of 82.11% and a precision rate of 89.23%.

Graphic Abstract

Enhancing Ulcerative Colitis Diagnosis: A Multi-Level Classification Approach with Deep Learning

Keywords


Cite This Article

APA Style
Alyamani, H.J. (2024). Enhancing ulcerative colitis diagnosis: A multi-level classification approach with deep learning. Computer Modeling in Engineering & Sciences, 140(1), 1129-1142. https://doi.org/10.32604/cmes.2024.047756
Vancouver Style
Alyamani HJ. Enhancing ulcerative colitis diagnosis: A multi-level classification approach with deep learning. Comput Model Eng Sci. 2024;140(1):1129-1142 https://doi.org/10.32604/cmes.2024.047756
IEEE Style
H.J. Alyamani, “Enhancing Ulcerative Colitis Diagnosis: A Multi-Level Classification Approach with Deep Learning,” Comput. Model. Eng. Sci., vol. 140, no. 1, pp. 1129-1142, 2024. https://doi.org/10.32604/cmes.2024.047756



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 650

    View

  • 291

    Download

  • 0

    Like

Share Link