Open Access iconOpen Access

ARTICLE

crossmark

PAL-BERT: An Improved Question Answering Model

Wenfeng Zheng1, Siyu Lu1, Zhuohang Cai1, Ruiyang Wang1, Lei Wang2, Lirong Yin2,*

1 School of Automation, University of Electronic Science and Technology of China, Chengdu, 610054, China
2 Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, 70803, USA

* Corresponding Author: Lirong Yin. Email: email

Computer Modeling in Engineering & Sciences 2024, 139(3), 2729-2745. https://doi.org/10.32604/cmes.2023.046692

Abstract

In the field of natural language processing (NLP), there have been various pre-training language models in recent years, with question answering systems gaining significant attention. However, as algorithms, data, and computing power advance, the issue of increasingly larger models and a growing number of parameters has surfaced. Consequently, model training has become more costly and less efficient. To enhance the efficiency and accuracy of the training process while reducing the model volume, this paper proposes a first-order pruning model PAL-BERT based on the ALBERT model according to the characteristics of question-answering (QA) system and language model. Firstly, a first-order network pruning method based on the ALBERT model is designed, and the PAL-BERT model is formed. Then, the parameter optimization strategy of the PAL-BERT model is formulated, and the Mish function was used as an activation function instead of ReLU to improve the performance. Finally, after comparison experiments with traditional deep learning models TextCNN and BiLSTM, it is confirmed that PAL-BERT is a pruning model compression method that can significantly reduce training time and optimize training efficiency. Compared with traditional models, PAL-BERT significantly improves the NLP task’s performance.

Keywords


Cite This Article

APA Style
Zheng, W., Lu, S., Cai, Z., Wang, R., Wang, L. et al. (2024). PAL-BERT: an improved question answering model. Computer Modeling in Engineering & Sciences, 139(3), 2729-2745. https://doi.org/10.32604/cmes.2023.046692
Vancouver Style
Zheng W, Lu S, Cai Z, Wang R, Wang L, Yin L. PAL-BERT: an improved question answering model. Comput Model Eng Sci. 2024;139(3):2729-2745 https://doi.org/10.32604/cmes.2023.046692
IEEE Style
W. Zheng, S. Lu, Z. Cai, R. Wang, L. Wang, and L. Yin, “PAL-BERT: An Improved Question Answering Model,” Comput. Model. Eng. Sci., vol. 139, no. 3, pp. 2729-2745, 2024. https://doi.org/10.32604/cmes.2023.046692



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1413

    View

  • 418

    Download

  • 1

    Like

Share Link